O centro das álgebras envolventes universais de álgebras de Lie nilpotentes em caraterística prima

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

The center of universal enveloping algebras of nilpotent Lie algebras in prime characteristic

Primeiro orientador

Membros da banca

Letterio Gatto
Lucas Henrique Calixto
Renato Vidal da Silva Martins
Tiago Rodrigues Macedo

Resumo

Seja $\mathfrak{g}$ uma álgebra de Lie de dimensão finita sobre um corpo $\mathbb{F}$ de característica prima $p$ e seja $U(\mathfrak{g})$ a álgebra envolvente universal de $\mathfrak{g}$. Sabemos da literatura que o centro $Z(\mathfrak{g})$ da álgebra envolvente $U(\mathfrak{g})$ é um domínio integralmente fechado. Nesta tese, descrevemos $Z(\mathfrak{g})$ para todas as álgebras de Lie nilpotentes indecomponíveis de dimensão menor ou igual a $6$ sobre um corpo $\mathbb{F}$ de característica prima $p$ assumindo que a classe de nilpotência $\mbox{cl}(\mathfrak{g})\leq p$. Apresentamos exemplos em que $Z(\mathfrak{g})=Z_{p}(\mathfrak{g})$, onde $Z_{p}(\mathfrak{g})$ é o $p$-centro de $U(\mathfrak{g})$. No entanto, encontramos casos em que $Z(\mathfrak{g})\neq Z_{p}(\mathfrak{g})$. Nestes casos, vamos lidar com extensões integrais $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]\subseteq Z(\mathfrak{g})$ onde $z_{1},\ldots, z_{s}\in Z(\mathfrak{g})\setminus Z_{p}(\mathfrak{g})$. Nas condições em que $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]\subseteq Z(\mathfrak{g})$ é uma extensão integral cujos corpos de frações coincidem, para ocorrer a igualdade $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]=Z(\mathfrak{g})$, é suficiente que $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]$ seja um domínio integralmente fechado. Boa parte de nosso trabalho é mostrar essa propriedade. Nesse ponto, precisamos dos conceitos de anéis regulares e anéis Cohen-Macaulay. Denotamos por $S(\mathfrak{g})$ a álgebra simétrica de $\mathfrak{g}$. Em característica zero, os espaços $U(\mathfrak{g})$ e $S(\mathfrak{g})$ são $\mathfrak{g}$-módulos isomorfos com respeito a representação adjunta. O conjunto de invariantes do $\mathfrak{g}$-módulo $U(\mathfrak{g})$ é o seu centro $Z(\mathfrak{g})$ e o conjunto de invariantes do $\mathfrak{g}$-módulo $S(\mathfrak{g})$ é denotado por $S(\mathfrak{g})^{\mathfrak{g}}$. Nesta tese, também, explicitamos a álgebra de invariantes $S(\mathfrak{g})^{\mathfrak{g}}$ para todas as álgebras de Lie nilpotentes indecomponíveis de dimensão menor ou igual a $6$ sobre um corpo $\mathbb{F}$ de característica prima $p$ com $\mbox{cl}(\mathfrak{g})\leq p$. Bem como, mostramos a incidência de um isomorfismo de álgebras entre $Z(\mathfrak{g})$ e $S(\mathfrak{g})^{\mathfrak{g}}$. Particularmente, determinamos $Z(\mathfrak{g})$ e $S(\mathfrak{g})^{\mathfrak{g}}$ para as álgebras de Lie standard filiform de dimensão até $6$ em característica prima $p$. Para essas álgebras, em geral, não é uma tarefa fácil determinar geradores explicitos para $Z(\mathfrak{g})$ e $S(\mathfrak{g})^{\mathfrak{g}}$ por causa da complexidade de seus geradores e suas relações.

Abstract

Let $\mathfrak{g}$ be a finite-dimensional Lie algebra over a field $\mathbb{F}$ of prime characteristic $p$ and let $U(\mathfrak{g})$ be the universal enveloping algebra of $\mathfrak{g}$. We know from the literature that the center $Z(\mathfrak{g})$ of the enveloping algebra $U(\mathfrak{g})$ is an integrally closed domain. In this thesis, we describe $Z(\mathfrak{g})$ for all indecomposable nilpotent Lie algebras of dimension less than or equal to $6$ over a field $\mathbb{F}$ of prime characteristic $p$ assuming that $\mbox{cl}(\mathfrak{g})\leq p$. We present examples where $Z(\mathfrak{g})=Z_{p}(\mathfrak{g})$, where $Z_{p}(\mathfrak{g})$ is the $p$-center of $U(\mathfrak{g})$. However, we found cases where $Z(\mathfrak{g})\neq Z_{p}(\mathfrak{g})$. In these cases, we will deal with integral extensions $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]\subseteq Z(\mathfrak{g})$ where $z_{1},\ldots, z_{s}\in Z(\mathfrak{g})\setminus Z_{p}(\mathfrak{g})$. When $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]\subseteq Z(\mathfrak{g})$ is an integral extension whose fraction fields coincide, for equality $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]=Z(\mathfrak{g})$ to occur, it is sufficient that $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]$ is an integrally closed domain. A good part of our job is to show this property. At this point, we need the concepts of regular rings and Cohen-Macaulay rings. We denote by $S(\mathfrak{g})$ the symmetric algebra of $\mathfrak{g}$. In characteristic zero, the spaces $U(\mathfrak{g})$ and $S(\mathfrak{g})$ are isomorphic $\mathfrak{g}$-modules with respect to the adjoint representation. The set of invariants of the $\mathfrak{g}$-module $U(\mathfrak{g})$ is its center $Z(\mathfrak{g})$ and the set of invariants of the $\mathfrak{g}$-module $S(\mathfrak{g})$ is denoted by $S(\mathfrak{g})^{\mathfrak{g}}$. In this thesis, we describe the algebra of invariants $S(\mathfrak{g})^{\mathfrak{g}}$ for all indecomposable nilpotent Lie algebras of a dimension less than or equal to $6$ over a field $\mathbb{F}$ of prime caracteristic $p$ with $\mbox{cl}(\mathfrak{g})\leq p$. Furthermore, we show the existence of an algebra isomorphism between $Z(\mathfrak{g})$ and $S(\mathfrak{g})^{\mathfrak{g}}$. We also describe $Z(\mathfrak{g})$ and $S(\mathfrak{g})^{\mathfrak{g}}$ for the standard filiform Lie algebras of dimension up to $6$ in prime characteristic $p$. For these algebras, in general, it is not an easy task to determine explicit generators for $Z(\mathfrak{g})$ and $S(\mathfrak{g})^{\mathfrak{g}}$ because of the complexity of their generators and their relations. Keywords: nilpotent Lie algebras, universal enveloping algebra, center, Poisson center, Cohen-Macaulay rings.

Assunto

Matemática - Teses, Lie, Álgebra de - Teses, Grupos nilpotentes - Teses, Poisson, Distribuição de - Teses, Aneis comutativos -Teses

Palavras-chave

Álgebras de Lie nilpotentes, Álgebra envolvente universal, Centro, Centro Poisson, Anéis Cohen-Macaulay

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto