O centro das álgebras envolventes universais de álgebras de Lie nilpotentes em caraterística prima

dc.creatorVanderlei Lopes de Jesus
dc.date.accessioned2022-01-08T03:19:48Z
dc.date.accessioned2025-09-08T22:56:48Z
dc.date.available2022-01-08T03:19:48Z
dc.date.issued2021-08-13
dc.description.abstractLet $\mathfrak{g}$ be a finite-dimensional Lie algebra over a field $\mathbb{F}$ of prime characteristic $p$ and let $U(\mathfrak{g})$ be the universal enveloping algebra of $\mathfrak{g}$. We know from the literature that the center $Z(\mathfrak{g})$ of the enveloping algebra $U(\mathfrak{g})$ is an integrally closed domain. In this thesis, we describe $Z(\mathfrak{g})$ for all indecomposable nilpotent Lie algebras of dimension less than or equal to $6$ over a field $\mathbb{F}$ of prime characteristic $p$ assuming that $\mbox{cl}(\mathfrak{g})\leq p$. We present examples where $Z(\mathfrak{g})=Z_{p}(\mathfrak{g})$, where $Z_{p}(\mathfrak{g})$ is the $p$-center of $U(\mathfrak{g})$. However, we found cases where $Z(\mathfrak{g})\neq Z_{p}(\mathfrak{g})$. In these cases, we will deal with integral extensions $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]\subseteq Z(\mathfrak{g})$ where $z_{1},\ldots, z_{s}\in Z(\mathfrak{g})\setminus Z_{p}(\mathfrak{g})$. When $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]\subseteq Z(\mathfrak{g})$ is an integral extension whose fraction fields coincide, for equality $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]=Z(\mathfrak{g})$ to occur, it is sufficient that $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]$ is an integrally closed domain. A good part of our job is to show this property. At this point, we need the concepts of regular rings and Cohen-Macaulay rings. We denote by $S(\mathfrak{g})$ the symmetric algebra of $\mathfrak{g}$. In characteristic zero, the spaces $U(\mathfrak{g})$ and $S(\mathfrak{g})$ are isomorphic $\mathfrak{g}$-modules with respect to the adjoint representation. The set of invariants of the $\mathfrak{g}$-module $U(\mathfrak{g})$ is its center $Z(\mathfrak{g})$ and the set of invariants of the $\mathfrak{g}$-module $S(\mathfrak{g})$ is denoted by $S(\mathfrak{g})^{\mathfrak{g}}$. In this thesis, we describe the algebra of invariants $S(\mathfrak{g})^{\mathfrak{g}}$ for all indecomposable nilpotent Lie algebras of a dimension less than or equal to $6$ over a field $\mathbb{F}$ of prime caracteristic $p$ with $\mbox{cl}(\mathfrak{g})\leq p$. Furthermore, we show the existence of an algebra isomorphism between $Z(\mathfrak{g})$ and $S(\mathfrak{g})^{\mathfrak{g}}$. We also describe $Z(\mathfrak{g})$ and $S(\mathfrak{g})^{\mathfrak{g}}$ for the standard filiform Lie algebras of dimension up to $6$ in prime characteristic $p$. For these algebras, in general, it is not an easy task to determine explicit generators for $Z(\mathfrak{g})$ and $S(\mathfrak{g})^{\mathfrak{g}}$ because of the complexity of their generators and their relations. Keywords: nilpotent Lie algebras, universal enveloping algebra, center, Poisson center, Cohen-Macaulay rings.
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.identifier.urihttps://hdl.handle.net/1843/39048
dc.languagepor
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pt/
dc.subjectMatemática - Teses
dc.subjectLie, Álgebra de - Teses
dc.subjectGrupos nilpotentes - Teses
dc.subjectPoisson, Distribuição de - Teses
dc.subjectAneis comutativos -Teses
dc.subject.otherÁlgebras de Lie nilpotentes
dc.subject.otherÁlgebra envolvente universal
dc.subject.otherCentro
dc.subject.otherCentro Poisson
dc.subject.otherAnéis Cohen-Macaulay
dc.titleO centro das álgebras envolventes universais de álgebras de Lie nilpotentes em caraterística prima
dc.title.alternativeThe center of universal enveloping algebras of nilpotent Lie algebras in prime characteristic
dc.typeTese de doutorado
local.contributor.advisor1Csaba Schneider
local.contributor.advisor1Latteshttp://lattes.cnpq.br/0326577563802136
local.contributor.referee1Letterio Gatto
local.contributor.referee1Lucas Henrique Calixto
local.contributor.referee1Renato Vidal da Silva Martins
local.contributor.referee1Tiago Rodrigues Macedo
local.creator.Latteshttp://lattes.cnpq.br/0816225004191018
local.description.resumoSeja $\mathfrak{g}$ uma álgebra de Lie de dimensão finita sobre um corpo $\mathbb{F}$ de característica prima $p$ e seja $U(\mathfrak{g})$ a álgebra envolvente universal de $\mathfrak{g}$. Sabemos da literatura que o centro $Z(\mathfrak{g})$ da álgebra envolvente $U(\mathfrak{g})$ é um domínio integralmente fechado. Nesta tese, descrevemos $Z(\mathfrak{g})$ para todas as álgebras de Lie nilpotentes indecomponíveis de dimensão menor ou igual a $6$ sobre um corpo $\mathbb{F}$ de característica prima $p$ assumindo que a classe de nilpotência $\mbox{cl}(\mathfrak{g})\leq p$. Apresentamos exemplos em que $Z(\mathfrak{g})=Z_{p}(\mathfrak{g})$, onde $Z_{p}(\mathfrak{g})$ é o $p$-centro de $U(\mathfrak{g})$. No entanto, encontramos casos em que $Z(\mathfrak{g})\neq Z_{p}(\mathfrak{g})$. Nestes casos, vamos lidar com extensões integrais $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]\subseteq Z(\mathfrak{g})$ onde $z_{1},\ldots, z_{s}\in Z(\mathfrak{g})\setminus Z_{p}(\mathfrak{g})$. Nas condições em que $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]\subseteq Z(\mathfrak{g})$ é uma extensão integral cujos corpos de frações coincidem, para ocorrer a igualdade $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]=Z(\mathfrak{g})$, é suficiente que $Z_{p}(\mathfrak{g})[z_{1},\ldots z_{s}]$ seja um domínio integralmente fechado. Boa parte de nosso trabalho é mostrar essa propriedade. Nesse ponto, precisamos dos conceitos de anéis regulares e anéis Cohen-Macaulay. Denotamos por $S(\mathfrak{g})$ a álgebra simétrica de $\mathfrak{g}$. Em característica zero, os espaços $U(\mathfrak{g})$ e $S(\mathfrak{g})$ são $\mathfrak{g}$-módulos isomorfos com respeito a representação adjunta. O conjunto de invariantes do $\mathfrak{g}$-módulo $U(\mathfrak{g})$ é o seu centro $Z(\mathfrak{g})$ e o conjunto de invariantes do $\mathfrak{g}$-módulo $S(\mathfrak{g})$ é denotado por $S(\mathfrak{g})^{\mathfrak{g}}$. Nesta tese, também, explicitamos a álgebra de invariantes $S(\mathfrak{g})^{\mathfrak{g}}$ para todas as álgebras de Lie nilpotentes indecomponíveis de dimensão menor ou igual a $6$ sobre um corpo $\mathbb{F}$ de característica prima $p$ com $\mbox{cl}(\mathfrak{g})\leq p$. Bem como, mostramos a incidência de um isomorfismo de álgebras entre $Z(\mathfrak{g})$ e $S(\mathfrak{g})^{\mathfrak{g}}$. Particularmente, determinamos $Z(\mathfrak{g})$ e $S(\mathfrak{g})^{\mathfrak{g}}$ para as álgebras de Lie standard filiform de dimensão até $6$ em característica prima $p$. Para essas álgebras, em geral, não é uma tarefa fácil determinar geradores explicitos para $Z(\mathfrak{g})$ e $S(\mathfrak{g})^{\mathfrak{g}}$ por causa da complexidade de seus geradores e suas relações.
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE MATEMÁTICA
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Matemática

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
O centro das álgebras envolventes universais de álgebras de Lie nilpotentes em característica prima.pdf
Tamanho:
1.12 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: