A necessidade de classificações repetidas no modelo de regressão logística com erros na variável resposta
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Frederico Rodrigues Borges da Cruz
Linda Lee Ho
Linda Lee Ho
Resumo
Estimadores de máxima verossimilhança de um modelo de regressão logística com erros de classificação na variável resposta são, reconhecidamente, viciados quando os erros são ignorados. A introdução de parâmetros de erros de classificação na função de verossimilhança pode resolver, satisfatoriamente, o problema do vício. Porém, conforme discutido neste trabalho, o aumento da variabilidade dos estimadores pode comprometer o processo de decisão. Assim, o problema pode ser minimizado com a introdução de informação adicional. Mostra-se que a realização de classificações repetidas na variável resposta da amostra ou em parte dela pode ser uma solução para as diminuições simultâneas do vício e da variabilidade dos estimadores.
Abstract
Maximum likelihood estimators for the logistic regression model with misclassification in the response variable are extremely biased when error probabilities are ignored. If misclassification parameters are incorporated in the likelihood function, the bias of the estimators will be satisfactorily reduced, however, there would be a considerable increase in variability, which would reduce the quality of the decision-making process. To minimize the problem, there is a need to introduce additional information. It will be demonstrated that the realization of repeated measures in the response variable, or in part of it, can reduce bias and variability of the estimators, simultaneously.
Assunto
Análise de regressão - Teses, Verossimilhança (Estatística) - Teses, Teoria dos erros - Teses
Palavras-chave
Resposta binária, Regressão logística, Erros de classificação, Classificações repetidas