Oleate hydratase in lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230 catalyzes the reversible conversion between linoleic acid and ricinoleic acid

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Conjugated linoleic acid (CLA) has been the subject of numerous studies in recent decades because of its associated health benefits. CLA is an intermediate product of the biohydrogenation pathway of linoleic acid (LA) in bacteria. Several bacterial species capable of efficiently converting LA into CLA have been widely reported in the literature, among them Lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230. Over the last few years, a multicomponent enzymatic system consisting of three enzymes involved in the biohydrogenation process of LA has been proposed. Sequencing the genome of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 revealed only one gene capable of encoding an oleate hydratase (OleH), unlike the presence of multiple genes typically found in similar strains. This study investigated the biological effect of the OleH enzyme of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 on the hydration of LA and dehydration of ricinoleic acid (RA) and its possible role in the production of CLA. The OleH was cloned, expressed, purified, and characterized. Fatty acid measurements were made by an internal standard method using a gas chromatography coupled flame ionization detector (GC-FID) system. It was found that the enzyme is a hydratase/dehydratase, leading to a reversible transformation between LA and RA. In addition, the results showed that L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH protein plays a role in stress tolerance in Escherichia coli. In conclusion, the OleH of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 catalyzes the initial stage of saturation metabolism of LA, although it has not converted the substrates directly into CLA.

Abstract

Assunto

Bacterias produtoras de acido lactico, Hidrogenação, Lactobacilo

Palavras-chave

Biohydrogenation, Heterologous expression, Homology modeling, Cis-9, Trans-11 CLA

Citação

Curso

Endereço externo

https://journals.asm.org/doi/10.1128/spectrum.01179-21

Avaliação

Revisão

Suplementado Por

Referenciado Por