Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Gilberto Pereira
Giovani Figueiredo
Grey Ercole
Olimpio Hiroshi Miyagaki
Ronaldo Brasileiro Assunção
Giovani Figueiredo
Grey Ercole
Olimpio Hiroshi Miyagaki
Ronaldo Brasileiro Assunção
Resumo
In this work we consider the following magnetic nonlinear Choquard equations
\[-(\nabla+iA(x))^2u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha}^*}\right) |u|^{2_{\alpha}^*-2} u + \lambda f(u)\ \textrm{ in }\ \R^N (N\geq 3)\]
and
\[(-\Delta)^s_A u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha,s}^*}\right) |u|^{2_{\alpha,s}^*-2} u + \lambda g(u)\ \textrm{ in }\ \R^N (N=3),\]
where $s\in(0,1)$, $2_{\alpha}^{*}=\frac{2N-\alpha}{N-2}$ and $2_{\alpha,s}^{*}=\frac{6-\alpha}{3-2s}$ are critical exponents in the sense of the Hardy-Littlewood-Sobolev inequality. Moreover, in both problems $0<\alpha< N,$ $\lambda>0,$ $A: \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ is an $C^1$, $\mathbb{Z}^N$-periodic vector potential and $V$ is a continuous scalar potential given as a perturbation of a periodic potential.
Considering different types of nonlinearities $f$ and $g$, namely, $f(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ for $(2N-\alpha)/N<p<2^{*}_{\alpha}$, then $f(u)=|u|^{p-1} u$ for $1<p<2^*-1$ and $f(u)=|u|^{2^* - 2}u$ (where $2^*=2N/(N-2)$), $g(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ for $(6-\alpha)/3<p<2^{*}_{\alpha,s}$, then $g(u)=|u|^{p-1} u$ for $1<p<2_s^*-1$ and $g(u)=|u|^{2_s^* - 2}u$ (where $2_s^*=6/(3-2s)$), we prove the existence of at least one ground state solution for these equations by variational methods if $p$ belongs to some intervals depending on $N$, $\lambda$ and also on $s$ in the second problem.
Abstract
Neste trabalho nós consideramos as seguintes equações de Choquard magnéticas não lineares
\[-(\nabla+iA(x))^2u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha}^*}\right) |u|^{2_{\alpha}^*-2} u + \lambda f(u)\ \textrm{ em }\ \R^N (N\geq 3)\]
e
\[(-\Delta)^s_A u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha,s}^*}\right) |u|^{2_{\alpha,s}^*-2} u + \lambda g(u)\ \textrm{ em }\ \R^N (N=3),\]
em que $s\in(0,1)$, $2_{\alpha}^{*}=\frac{2N-\alpha}{N-2}$ e $2_{\alpha,s}^{*}=\frac{6-\alpha}{3-2s}$ são os expoentes críticos no sentido da desigualdade de Hardy-Littlewood-Sobolev. Além disso, em ambos os problemas $0<\alpha< N,$ $\lambda>0,$ $A: \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ é um potencial vetorial de classe $C^1$, $\mathbb{Z}^N$-periódico e $V$ é potencial escalar contínuo dado como uma perturbação de um potencial periódico.
Considerando diferentes tipos de não linearidades $f$ e $g$, a saber, $f(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ para $(2N-\alpha)/N<p<2^{*}_{\alpha}$, depois $f(u)=|u|^{p-1} u$ para $1<p<2^*-1$ e $f(u)=|u|^{2^* - 2}u$ (em que $2^*=2N/(N-2)$), $g(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ para $(6-\alpha)/3<p<2^{*}_{\alpha,s}$, depois $g(u)=|u|^{p-1} u$ para $1<p<2_s^*-1$ e $g(u)=|u|^{2_s^* - 2}u$ (em que $2_s^*=6/(3-2s)$), nós provamos a existência de ao menos uma solução de estado fundamental para estas equações por métodos variacionais se $p$ pertence a alguns intervalos dependendo de $N$, $\lambda$ e também de $s$ no segundo problema.
Assunto
Matemática – Teses, Métodos variacionais – Teses, Equação de Choquard – Teses, Expoente crítico de Hardy LittlewoodSobolev– Teses.
Palavras-chave
Variational methods, Magnetic Choquard equation, Fractional magnetic Choquard equation, Hardy-Littlewood-Sobolev critical exponent
Citação
Departamento
Endereço externo
Avaliação
Revisão
Suplementado Por
Referenciado Por
Licença Creative Commons
Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto
