Nonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent

dc.creatorLeandro da Luz Vieira
dc.date.accessioned2021-04-08T01:08:11Z
dc.date.accessioned2025-09-09T00:58:42Z
dc.date.available2021-04-08T01:08:11Z
dc.date.issued2020-08-04
dc.description.abstractNeste trabalho nós consideramos as seguintes equações de Choquard magnéticas não lineares \[-(\nabla+iA(x))^2u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha}^*}\right) |u|^{2_{\alpha}^*-2} u + \lambda f(u)\ \textrm{ em }\ \R^N (N\geq 3)\] e \[(-\Delta)^s_A u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha,s}^*}\right) |u|^{2_{\alpha,s}^*-2} u + \lambda g(u)\ \textrm{ em }\ \R^N (N=3),\] em que $s\in(0,1)$, $2_{\alpha}^{*}=\frac{2N-\alpha}{N-2}$ e $2_{\alpha,s}^{*}=\frac{6-\alpha}{3-2s}$ são os expoentes críticos no sentido da desigualdade de Hardy-Littlewood-Sobolev. Além disso, em ambos os problemas $0<\alpha< N,$ $\lambda>0,$ $A: \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ é um potencial vetorial de classe $C^1$, $\mathbb{Z}^N$-periódico e $V$ é potencial escalar contínuo dado como uma perturbação de um potencial periódico. Considerando diferentes tipos de não linearidades $f$ e $g$, a saber, $f(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ para $(2N-\alpha)/N<p<2^{*}_{\alpha}$, depois $f(u)=|u|^{p-1} u$ para $1<p<2^*-1$ e $f(u)=|u|^{2^* - 2}u$ (em que $2^*=2N/(N-2)$), $g(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ para $(6-\alpha)/3<p<2^{*}_{\alpha,s}$, depois $g(u)=|u|^{p-1} u$ para $1<p<2_s^*-1$ e $g(u)=|u|^{2_s^* - 2}u$ (em que $2_s^*=6/(3-2s)$), nós provamos a existência de ao menos uma solução de estado fundamental para estas equações por métodos variacionais se $p$ pertence a alguns intervalos dependendo de $N$, $\lambda$ e também de $s$ no segundo problema.
dc.description.sponsorshipFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.identifier.urihttps://hdl.handle.net/1843/35582
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/
dc.subjectMatemática – Teses
dc.subjectMétodos variacionais – Teses
dc.subjectEquação de Choquard – Teses
dc.subjectExpoente crítico de Hardy­ Littlewood­Sobolev– Teses.
dc.subject.otherVariational methods
dc.subject.otherMagnetic Choquard equation
dc.subject.otherFractional magnetic Choquard equation
dc.subject.otherHardy-Littlewood-Sobolev critical exponent
dc.titleNonlinear perturbations of a periodic magnetic nonlinear Choquard equation with Hardy-Littlewood-Sobolev critical exponent
dc.typeTese de doutorado
local.contributor.advisor-co1Narciso da Hora Lisboa
local.contributor.advisor1Hamilton Prado Bueno
local.contributor.advisor1Latteshttp://lattes.cnpq.br/0867903003222790
local.contributor.referee1Gilberto Pereira
local.contributor.referee1Giovani Figueiredo
local.contributor.referee1Grey Ercole
local.contributor.referee1Olimpio Hiroshi Miyagaki
local.contributor.referee1Ronaldo Brasileiro Assunção
local.creator.Latteshttp://lattes.cnpq.br/6875339639133710
local.description.resumoIn this work we consider the following magnetic nonlinear Choquard equations \[-(\nabla+iA(x))^2u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha}^*}\right) |u|^{2_{\alpha}^*-2} u + \lambda f(u)\ \textrm{ in }\ \R^N (N\geq 3)\] and \[(-\Delta)^s_A u+ V(x)u = \left(\frac{1}{|x|^{\alpha}}*|u|^{2_{\alpha,s}^*}\right) |u|^{2_{\alpha,s}^*-2} u + \lambda g(u)\ \textrm{ in }\ \R^N (N=3),\] where $s\in(0,1)$, $2_{\alpha}^{*}=\frac{2N-\alpha}{N-2}$ and $2_{\alpha,s}^{*}=\frac{6-\alpha}{3-2s}$ are critical exponents in the sense of the Hardy-Littlewood-Sobolev inequality. Moreover, in both problems $0<\alpha< N,$ $\lambda>0,$ $A: \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}$ is an $C^1$, $\mathbb{Z}^N$-periodic vector potential and $V$ is a continuous scalar potential given as a perturbation of a periodic potential. Considering different types of nonlinearities $f$ and $g$, namely, $f(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ for $(2N-\alpha)/N<p<2^{*}_{\alpha}$, then $f(u)=|u|^{p-1} u$ for $1<p<2^*-1$ and $f(u)=|u|^{2^* - 2}u$ (where $2^*=2N/(N-2)$), $g(x,u)=\left(\frac{1}{|x|^{\alpha}}*|u|^{p}\right)|u|^{p-2} u$ for $(6-\alpha)/3<p<2^{*}_{\alpha,s}$, then $g(u)=|u|^{p-1} u$ for $1<p<2_s^*-1$ and $g(u)=|u|^{2_s^* - 2}u$ (where $2_s^*=6/(3-2s)$), we prove the existence of at least one ground state solution for these equations by variational methods if $p$ belongs to some intervals depending on $N$, $\lambda$ and also on $s$ in the second problem.
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE MATEMÁTICA
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Matemática

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Thesis_LeandrodaLuz_Final.pdf
Tamanho:
2.18 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: