An exact LMI condition for the strong delay-independent stability analysis of neutral delay systems

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

This paper concentrates on strong delay-independent stability of neutral linear time-invariant delay systems with multiple commensurate time delays. The stability analysis of linear neutral systems is complicated by the need to locate the roots of a transcendental characteristic equation and to take into account the global hyperbolicity of an associated difference system. In this paper, we propose a convex necessary and sufficient condition for testing strong delay-independent stability. This result mainly follows from Kronecker sum properties and the Kalman-Yakubovich-Popov lemma, which allows us to present the main result in terms of a single linear matrix inequality feasibility test. The paper is closed by showing numerical examples that illustrate the applicability and effectiveness of the proposed method.

Abstract

Assunto

Sistemas não lineares, Kalman, Filtragem de

Palavras-chave

Kalman-Yakubovich-Popov lemma, Delay-independent stability, Linear matrix inequalities, Multipletime-delays, Neutral delay systems

Citação

Curso

Endereço externo

https://onlinelibrary.wiley.com/doi/full/10.1002/rnc.4324

Avaliação

Revisão

Suplementado Por

Referenciado Por