An exact LMI condition for the strong delay-independent stability analysis of neutral delay systems

dc.creatorFernando de Oliveira Souza
dc.date.accessioned2025-04-24T18:12:19Z
dc.date.accessioned2025-09-09T01:18:02Z
dc.date.available2025-04-24T18:12:19Z
dc.date.issued2018
dc.identifier.doihttps://doi.org/10.1002/rnc.4324
dc.identifier.issn1049-8923
dc.identifier.urihttps://hdl.handle.net/1843/81819
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofInternational journal of robust and nonlinear control
dc.rightsAcesso Restrito
dc.subjectSistemas não lineares
dc.subjectKalman, Filtragem de
dc.subject.otherKalman-Yakubovich-Popov lemma
dc.subject.otherDelay-independent stability
dc.subject.otherLinear matrix inequalities
dc.subject.otherMultipletime-delays
dc.subject.otherNeutral delay systems
dc.titleAn exact LMI condition for the strong delay-independent stability analysis of neutral delay systems
dc.typeArtigo de periódico
local.citation.epage5385
local.citation.issue17
local.citation.spage5375
local.citation.volume28
local.description.resumoThis paper concentrates on strong delay-independent stability of neutral linear time-invariant delay systems with multiple commensurate time delays. The stability analysis of linear neutral systems is complicated by the need to locate the roots of a transcendental characteristic equation and to take into account the global hyperbolicity of an associated difference system. In this paper, we propose a convex necessary and sufficient condition for testing strong delay-independent stability. This result mainly follows from Kronecker sum properties and the Kalman-Yakubovich-Popov lemma, which allows us to present the main result in terms of a single linear matrix inequality feasibility test. The paper is closed by showing numerical examples that illustrate the applicability and effectiveness of the proposed method.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
local.publisher.initialsUFMG
local.url.externahttps://onlinelibrary.wiley.com/doi/full/10.1002/rnc.4324

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: