Local behavior and existence of solutions for problems involving fractional (p,q)- Laplacian

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Membros da banca

Resumo

In the first part of this work, we study the regularity of weak solutions (in an appropriate space) of the elliptic partial differential equation (−∆p)su + (−∆q)su = f(x) in RN, where 0 < s < 1 and 2 ≤ q ≤ p < N/s, and we prove that these solutions are locally in C0,α(RN). In the sequence, we prove the existence of solutions of the problem (−∆p)su + (−∆q)su = |u|p∗ s−2u + λg(x)|u|r−2u in RN, where 1 < q ≤ p < N/s, λ is a parameter and g satisfies some integrability conditions. As an application of the previus result, we show that, if 0 < s < 1, 2 ≤ q ≤ p < N/s and g is bounded, then the obtained solutions are continuous and bounded. In the final part of the work, we study the behavior as p →∞ of up, a positive least energy solution of the problem        h(−∆p)α +−∆q(p) βiu = µpkukp−2 ∞ u(xu)δxu in Ω u = 0 in RN \Ω |u(xu)| = kuk∞, where Ω ⊂RN is a smooth bounded domain, δxu is the Dirac delta distribution supported at xu, lim p→∞ q(p) p = Q ∈((0,1) if 0 < β < α < 1 (1,∞) if 0 < α < β < 1 and lim p→∞ p √µp > R−α, with R denoting the inradius of Ω.

Abstract

Assunto

Palavras-chave

Laplacian, Differential equation

Citação

Departamento

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por