Local behavior and existence of solutions for problems involving fractional (p,q)- Laplacian

dc.creatorAldo Henrique de Souza Medeiros
dc.date.accessioned2019-11-04T15:09:39Z
dc.date.accessioned2025-09-08T23:42:36Z
dc.date.available2019-11-04T15:09:39Z
dc.date.issued2019-08-23
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.identifier.urihttps://hdl.handle.net/1843/30804
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subject.otherLaplacian
dc.subject.otherDifferential equation
dc.titleLocal behavior and existence of solutions for problems involving fractional (p,q)- Laplacian
dc.typeTese de doutorado
local.contributor.advisor1Emerson Alves Mendonça de Abreu
local.contributor.advisor1Latteshttp://lattes.cnpq.br/0989407026771712
local.creator.Latteshttp://lattes.cnpq.br/2515109720775692
local.description.resumoIn the first part of this work, we study the regularity of weak solutions (in an appropriate space) of the elliptic partial differential equation (−∆p)su + (−∆q)su = f(x) in RN, where 0 < s < 1 and 2 ≤ q ≤ p < N/s, and we prove that these solutions are locally in C0,α(RN). In the sequence, we prove the existence of solutions of the problem (−∆p)su + (−∆q)su = |u|p∗ s−2u + λg(x)|u|r−2u in RN, where 1 < q ≤ p < N/s, λ is a parameter and g satisfies some integrability conditions. As an application of the previus result, we show that, if 0 < s < 1, 2 ≤ q ≤ p < N/s and g is bounded, then the obtained solutions are continuous and bounded. In the final part of the work, we study the behavior as p →∞ of up, a positive least energy solution of the problem        h(−∆p)α +−∆q(p) βiu = µpkukp−2 ∞ u(xu)δxu in Ω u = 0 in RN \Ω |u(xu)| = kuk∞, where Ω ⊂RN is a smooth bounded domain, δxu is the Dirac delta distribution supported at xu, lim p→∞ q(p) p = Q ∈((0,1) if 0 < β < α < 1 (1,∞) if 0 < α < β < 1 and lim p→∞ p √µp > R−α, with R denoting the inradius of Ω.
local.publisher.countryBrasil
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Matemática

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Tese_AldoHenrique_Souza Medeiros.pdf
Tamanho:
556.16 KB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: