O segundo invariante de Yamabe sobre variedades CR

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Rodney Josue Biezuner
Arturo Ulises Fernandez Perez
Luiz Gustavo de Oliveira Carneiro
Gustavo Hoepfner

Resumo

No final dos anos 70 e início dos anos 80, a geometria das variedades CR, modelo abstratode hipersuperfícies reais em variedades complexas, atraiu a atenção de importantes matemáticos tais como Chern, Moser, Fefferman, Jacobowitz, D. Jerison, J. Lee, Tanaka,Webster, entre outros. Essa geometria é particularmente rica quando a variedade CR e estritamente pseudoconvexa. Nesse caso, existe uma estreita relação entre sua geometriae a geometria das variedades Riemannianas. Uma estrutura pseudohermitiana para uma variedade M munida de uma CR-estrutura T1;0(M) é uma forma de contato 0 que aniquilaa distribuição de Levi H(M) = RefT1;0 + T0;1g, em que T0;1 = T1;0. Tal estrutura determinauma forma Hermitiana natural sobre a CR-estrutura T1;0(M), denominada forma deLevi e denotada por Lo. A forma de Levi é bem definida (para cada CR-estrutura) módulo multiplicação por uma função suave, exatamente como ocorre na geometria Riemanniana conforme. Quando Lo é uma forma definida, dizemos que (M; ) é uma variedade pseudohermitiana estritamente pseudoconvexa. Nesse caso, se M é orientável, o fibrado deaniquiladores da distribuição de Levi H(M)? = f 2 T(M) : H(M) kerg é trivial.Portanto, H(M)? admite uma orientação natural. Assim dizemos que uma estrutura pseudohermitiana 0 é positiva, se a forma de Levi associada é positiva definida.

Abstract

Assunto

Matemática, Geometria diferencial, Variedades (Matematica)

Palavras-chave

Matemática

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por