Mathematical Theory of Incompressible Flows: Local Existence, Uniqueness, Blow-up and Asymptotic Behavior of Solutions in Sobolev-Gevrey and Lei-Lin Spaces
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Emerson Alves Mendonça de Abreu
Luiz Gustavo Farah Dias
Paulo Cupertino de Lima
Janaína Pires Zingano
Paulo Ricardo de Ávila Zingano
Luiz Gustavo Farah Dias
Paulo Cupertino de Lima
Janaína Pires Zingano
Paulo Ricardo de Ávila Zingano
Resumo
This research project has as main objective to generalize and improve recently developed methods to establish existence, uniqueness and blow-up criteria of local solutions in time for the Navier-Stokes equations involving Sobolev-Gevrey and Lei-Lin spaces; as well as assuming the existence of a global solution in time for this same system, present decay rates of these solutions in these spaces.
Abstract
Assunto
Matemática
Palavras-chave
decay rates, local existence, blow-up criteria, Sobolev-Gevrey spaces, Navier-Stokes equations, Lei-Lin spaces