Mathematical Theory of Incompressible Flows: Local Existence, Uniqueness, Blow-up and Asymptotic Behavior of Solutions in Sobolev-Gevrey and Lei-Lin Spaces

dc.creatorNatã Firmino Santana Rocha
dc.date.accessioned2019-08-12T15:17:32Z
dc.date.accessioned2025-09-08T23:08:23Z
dc.date.available2019-08-12T15:17:32Z
dc.date.issued2019-04-22
dc.identifier.urihttps://hdl.handle.net/1843/EABA-BBTH5S
dc.languageInglês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectMatemática
dc.subject.otherdecay rates
dc.subject.otherlocal existence
dc.subject.otherblow-up criteria
dc.subject.otherSobolev-Gevrey spaces
dc.subject.otherNavier-Stokes equations
dc.subject.otherLei-Lin spaces
dc.titleMathematical Theory of Incompressible Flows: Local Existence, Uniqueness, Blow-up and Asymptotic Behavior of Solutions in Sobolev-Gevrey and Lei-Lin Spaces
dc.typeTese de doutorado
local.contributor.advisor-co1Wilberclay Gonçalves Melo
local.contributor.advisor1Ezequiel Rodrigues Barbosa
local.contributor.referee1Emerson Alves Mendonça de Abreu
local.contributor.referee1Luiz Gustavo Farah Dias
local.contributor.referee1Paulo Cupertino de Lima
local.contributor.referee1Janaína Pires Zingano
local.contributor.referee1Paulo Ricardo de Ávila Zingano
local.description.resumoThis research project has as main objective to generalize and improve recently developed methods to establish existence, uniqueness and blow-up criteria of local solutions in time for the Navier-Stokes equations involving Sobolev-Gevrey and Lei-Lin spaces; as well as assuming the existence of a global solution in time for this same system, present decay rates of these solutions in these spaces.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
tese_nat_.pdf
Tamanho:
771.3 KB
Formato:
Adobe Portable Document Format