Robust attitude estimation using an adaptive unscented Kalman filter
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de evento
Título alternativo
Primeiro orientador
Membros da banca
Resumo
This paper presents the robust Adaptive unscented Kalman filter (RAUKF) for attitude estimation. Since the proposed algorithm represents attitude as a unit quaternion, all basic tools used, including the standard UKF, are adapted to the unit quaternion algebra. Additionally, the algorithm adopts an outlier detector algorithm to identify abrupt changes in the UKF innovation and an adaptive strategy based on covariance matching to tune the measurement covariance matrix online. Adaptation and outlier detection make the proposed algorithm robust to fast and slow perturbations such as magnetic field interference and linear accelerations. Experimental results with a manipulator robot suggest that our method overcomes other algorithms found in the literature.
Abstract
Assunto
Modelos matemáticos, Kalman, Filtragem de
Palavras-chave
Quaternions , Estimation , Covariance matrices , Magnetometers , Kalman filters , Accelerometers , Mathematical model, Kalman Filter , Position Estimation , Adaptive Filter , Unscented Kalman Filter , Adaptive Kalman Filter , Adaptive Unscented Kalman Filter , Magnetic Field , Covariance Matrix , Linear Accelerator , Filter For Estimation , Robust Filter , Unit Quaternion , Kalman Filter For Estimation , Root Mean Square Error , Accelerometer , Measurement Uncertainty , Magnetometer , Measurement Noise , Euclidean Space , Inertial Measurement Unit , Rotation Vector , Bias Term , Exponential Map , Median Absolute Deviation , Covariance Estimation , Tangent Space , Inverse Mapping , Euler Angles , Angular Speed , Riemannian Manifold
Citação
Curso
Endereço externo
https://ieeexplore.ieee.org/document/8793714