Robust attitude estimation using an adaptive unscented Kalman filter

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de evento

Título alternativo

Primeiro orientador

Membros da banca

Resumo

This paper presents the robust Adaptive unscented Kalman filter (RAUKF) for attitude estimation. Since the proposed algorithm represents attitude as a unit quaternion, all basic tools used, including the standard UKF, are adapted to the unit quaternion algebra. Additionally, the algorithm adopts an outlier detector algorithm to identify abrupt changes in the UKF innovation and an adaptive strategy based on covariance matching to tune the measurement covariance matrix online. Adaptation and outlier detection make the proposed algorithm robust to fast and slow perturbations such as magnetic field interference and linear accelerations. Experimental results with a manipulator robot suggest that our method overcomes other algorithms found in the literature.

Abstract

Assunto

Modelos matemáticos, Kalman, Filtragem de

Palavras-chave

Quaternions , Estimation , Covariance matrices , Magnetometers , Kalman filters , Accelerometers , Mathematical model, Kalman Filter , Position Estimation , Adaptive Filter , Unscented Kalman Filter , Adaptive Kalman Filter , Adaptive Unscented Kalman Filter , Magnetic Field , Covariance Matrix , Linear Accelerator , Filter For Estimation , Robust Filter , Unit Quaternion , Kalman Filter For Estimation , Root Mean Square Error , Accelerometer , Measurement Uncertainty , Magnetometer , Measurement Noise , Euclidean Space , Inertial Measurement Unit , Rotation Vector , Bias Term , Exponential Map , Median Absolute Deviation , Covariance Estimation , Tangent Space , Inverse Mapping , Euler Angles , Angular Speed , Riemannian Manifold

Citação

Curso

Endereço externo

https://ieeexplore.ieee.org/document/8793714

Avaliação

Revisão

Suplementado Por

Referenciado Por