Robust attitude estimation using an adaptive unscented Kalman filter
| dc.creator | Antônio Carlos Bana Chiella | |
| dc.creator | Bruno Otávio Teixeira | |
| dc.creator | Guilherme Augusto Silva Pereira | |
| dc.date.accessioned | 2025-05-09T12:04:38Z | |
| dc.date.accessioned | 2025-09-08T23:50:55Z | |
| dc.date.available | 2025-05-09T12:04:38Z | |
| dc.date.issued | 2019 | |
| dc.identifier.doi | 10.1109/ICRA.2019.8793714 | |
| dc.identifier.uri | https://hdl.handle.net/1843/82170 | |
| dc.language | eng | |
| dc.publisher | Universidade Federal de Minas Gerais | |
| dc.relation.ispartof | International Conference on Robotics and Automation (ICRA) | |
| dc.rights | Acesso Restrito | |
| dc.subject | Modelos matemáticos | |
| dc.subject | Kalman, Filtragem de | |
| dc.subject.other | Quaternions , Estimation , Covariance matrices , Magnetometers , Kalman filters , Accelerometers , Mathematical model | |
| dc.subject.other | Kalman Filter , Position Estimation , Adaptive Filter , Unscented Kalman Filter , Adaptive Kalman Filter , Adaptive Unscented Kalman Filter , Magnetic Field , Covariance Matrix , Linear Accelerator , Filter For Estimation , Robust Filter , Unit Quaternion , Kalman Filter For Estimation , Root Mean Square Error , Accelerometer , Measurement Uncertainty , Magnetometer , Measurement Noise , Euclidean Space , Inertial Measurement Unit , Rotation Vector , Bias Term , Exponential Map , Median Absolute Deviation , Covariance Estimation , Tangent Space , Inverse Mapping , Euler Angles , Angular Speed , Riemannian Manifold | |
| dc.title | Robust attitude estimation using an adaptive unscented Kalman filter | |
| dc.type | Artigo de evento | |
| local.citation.epage | 7754 | |
| local.citation.spage | 7748 | |
| local.description.resumo | This paper presents the robust Adaptive unscented Kalman filter (RAUKF) for attitude estimation. Since the proposed algorithm represents attitude as a unit quaternion, all basic tools used, including the standard UKF, are adapted to the unit quaternion algebra. Additionally, the algorithm adopts an outlier detector algorithm to identify abrupt changes in the UKF innovation and an adaptive strategy based on covariance matching to tune the measurement covariance matrix online. Adaptation and outlier detection make the proposed algorithm robust to fast and slow perturbations such as magnetic field interference and linear accelerations. Experimental results with a manipulator robot suggest that our method overcomes other algorithms found in the literature. | |
| local.publisher.country | Brasil | |
| local.publisher.department | ENG - DEPARTAMENTO DE ENGENHARIA ELÉTRICA | |
| local.publisher.department | ENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA | |
| local.publisher.initials | UFMG | |
| local.url.externa | https://ieeexplore.ieee.org/document/8793714 |
Arquivos
Licença do pacote
1 - 1 de 1