Algoritmos determinístico e evolucionário intervalarespara otimização robusta multi-objetivo
| dc.creator | Gustavo Luis Soares | |
| dc.date.accessioned | 2019-08-13T05:15:42Z | |
| dc.date.accessioned | 2025-09-08T23:39:34Z | |
| dc.date.available | 2019-08-13T05:15:42Z | |
| dc.date.issued | 2008-10-24 | |
| dc.description.abstract | This thesis considers the presence of uncertainties in the modeling ofnonlinear multi-objective optimization problem. To solve these nonlinearmulti-objective robust optimization problems, three original search methods has been proposed using worst-case scenario strategies: [I]RMOA I and [I]RMOA II, that use interval deterministic techniques, and [I]RMOEA that uses evolutionary algorithms and deterministic interval techniques. The found efficient solutions in this context are called efficient robust solutions or non-dominated robust solutions. These algorithms are at great length described, as well as the analysis of their characteristics, advantages and disadvantages. Beyond these original contributions, this work also considers: a) one technique of niches, based on intervals, useful to keep diversity in the populations in evolutionary algorithms; b) a metric technique to measure uniformity in the non-dominated points distribution; c) a set of test functions, suitable for robust optimization; e d) the description and resolution of a multi-objective robust optimization problem about PID controller tuning. In addition, this text presents and argues the sources of uncertainties, as well as their probabilistic and deterministic interpretations in optimization problems. | |
| dc.identifier.uri | https://hdl.handle.net/1843/BUOS-8CKEEQ | |
| dc.language | Português | |
| dc.publisher | Universidade Federal de Minas Gerais | |
| dc.rights | Acesso Aberto | |
| dc.subject | Engenharia elétrica | |
| dc.subject.other | Engenharia Elétrica | |
| dc.title | Algoritmos determinístico e evolucionário intervalarespara otimização robusta multi-objetivo | |
| dc.type | Tese de doutorado | |
| local.contributor.advisor-co1 | Carlos Andrey Maia | |
| local.contributor.advisor1 | Joao Antonio de Vasconcelos | |
| local.contributor.referee1 | Luc Jaulin | |
| local.contributor.referee1 | Laurent Hardouin | |
| local.description.resumo | Esta Tese considera a presença de incertezas na modelagem do problema de otimização não linear multi-objetivo. Para solucionar esse problema de otimização robusta, três métodos de busca originais foram propostos utilizando a filosofia do pior caso, isto é, a metodologia na qual se busca determinar as variáveis de projeto eficientes para o pior caso das incertezas. Os métodos propostos são o [I]RMOA I e [I]RMOA II, que utilizam técnicas intervalares, e o [I]RMOEA que utiliza algoritmos evolucionários e técnicas intervalares. As soluções eficientes encontradas neste contexto, são denominadas de soluções robustas eficientes. Esses algoritmos são descritos detalhadamente, bem como a análise de suas características, vantagens e desvantagens. Além destas contribuições originais, este trabalho também propõe: a) uma técnica de nichos, baseada em intervalos, útil para manter diversidade nas populações em algoritmos evolucionários; b) uma métrica para medir a uniformidade da distribuição de pontos eficientes; c) um conjunto de funções teste, adaptadas para otimização robusta; e d) a descrição e resolução de um problema de otimização robusta multi-objetivo envolvendo sintonia de controladores PID. Em adição, este texto apresenta e discute as fontes de incertezas, as interpretações probabilísticas e determinísticas da interferência das incertezas no sistema de otimização. | |
| local.publisher.initials | UFMG |
Arquivos
Pacote original
1 - 1 de 1
Carregando...
- Nome:
- gustavo_lu_s_soares.pdf
- Tamanho:
- 6.65 MB
- Formato:
- Adobe Portable Document Format