Involuções e elementos Cayley unitários em álgebras de grupos e anéis de matrizes
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Adilson Gonçalves
Michel Spira
Michel Spira
Resumo
Seja * a involução canônica da álgebra de grupo KG induzida pela aplicação (x \mapsto x{^-1} para x \in G. No caso em que K é uma extensão real de Q, consideramos elementos Cayley unitários construídos a partir de elementos anti-simétricos k = \alpha (x - x{-1}) em KG tais que 1 + k é invertível em KG, para \alpha \in K e x \in G. As construções envolvem uma interessante sequência nos coeficientes de (1 + k){^-1}, que é a sequência de Fibonacci quando \alpha = 1. Estudamos também involuções e elementos Cayley unitários no anel M{_n}(D) de matrizes n × n sobre um anel de divisão D, baseados no artigo Unitary elements in simple artinian rings de C. Chuang e P. Lee.
Abstract
Assunto
Matemática
Palavras-chave
Álgebras de Grupos, Anéis