Problemas elípticos semilineares com potenciais que se anulam no infinito

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Membros da banca

Ezequiel Rodrigues Barbosa
Gilberto de Assis Pereira

Resumo

Nesta dissertação estudamos um resultado de existência de solução positiva u ∈ D^{1,2}(R^N ) para a classe de equações diferenciais elípticas −∆u + V (x)u = f (u) (x ∈ R^N) em que N > 3, a não linearidade f : R → R é função contínua com crescimento subcrítico ou crítico no sentido das imersões de Sobolev e o potencial V : R^N → R é função contínua não negativa que pode se anular no infinito, ou seja, V (x) → 0 quando |x| → ∞. Também estudamos um resultado de existência de solução positiva ground state u ∈ D^{1,2}(R^N) para a classe de equações diferenciais elípticas −∆u + V (x)u = K(x)f (u) (x ∈ R^N) em que N > 3, a não linearidade f : R → R é função contínua com crescimento quase crítico e V , K : RN → R são funções contínuas, não negativas, o potencial V pode se anular no infinito e K verifica condições de crescimento dependentes de V. Palavras-chave Potencial que se anula no infinito, método de penalização, esquema de iteração de Moser, teorema do passo da montanha, desigualdade de Hardy.

Abstract

this dissertation, we study a result of existence of positive solution u ∈ D1,2 (R N ) for the following class of elliptic equations −∆u + V (x)u = f(u) (x ∈ R N ) where the nonlinearity f : R → R is a continuous function having a subcritical or critical growth in the sense of Sobolev embeddings and the potential V : R N → R is a continuous, non-negative function which can vanish at infinity, that is, V (x) → 0 as |x| → ∞. We also study a result of existence of positive ground state solution u ∈ D1,2 (R N ) for the following class of elliptic equations −∆u + V (x)u = K(x)f(u)(x ∈ R N ) where N > 3, the nonlinearity f : R → R is a continuous function having a quasi critical growth, and V , K : R N → R are continuous, non-negative functions, the potential V can vanish at infinity and K verifies growth conditions dependent on V . Key-words Potential vanishing at infinity, penalization method, Moser iteration scheme, mountain pass theorem, Hardy-type inequality.

Assunto

Matemática – Teses, Teorema do passo da montanha – Teses, Potenciais de Hardy – Teses

Palavras-chave

Potencial que se anula no infinito, Método de penalização, Esquema de iteração de Moser, Teorema do passo da montanha, Desigualdade de Hardy

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto