Existence of robust non-uniformly hyperbolic endomorphism in homotopy classes

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Existência de endomorfismo robusto não uniformemente hiperbólico em classes de homotopia

Primeiro orientador

Membros da banca

Karina Daniela Marín
Martin Andersson
Radu Saghin

Resumo

We extend the results of Andersson-Carrasco-Saghin by showing that any linear endomorphism of T^2 induced by a homothety is homotopic to a non-uniformly hyperbolic ergodic area preserving map, provided that its degree is at least 5^2. We also address other small topological degree cases not considered in the previous article. This proves the existence of a C^1 open set of non-uniformly hyperbolic systems, that intersects essentially every homotopy class in T^2, where the Lyapunov exponents vary continuously. We give here a detailed survey on Andersson-Carrasco-Saghin's results. Those includes the existence of stably ergodic (Bernoulli in fact) endomorphisms on each homotopy class where robust non-uniform hyperbolicity is achieved. We also includes generalized aspects of the theory and some specifications to the 2-torus case. In particular, we show how the natural extension of endomorphisms in the same homotopy class can be canonically identified with a Solenoidal manifold, provided that they are normal covers. This is a technique of great importance on the study of endomorphisms in the smooth ergodic theory.

Abstract

Nós estendemos os resultados expostos por Andersson-Carrasco-Saghin obtendo que qualquer endomorfismo linear em T^2 induzido por uma homotetia é homotópico a um mapa conservativo e não uniformemente hiperbólico, desde que seu grau topológico seja ao menos 5^2. Nós também abordamos outros casos de grau topológico baixo que não foram considerados nesse artigo. Com isso, provamos a existência de um aberto da topologia C^1, formado por sistemas não uniformemente hiperbólicos, que intersecta essencialmente qualquer classe de homotopia de endomorfismos em T^2, aberto no qual o expoente de Lyapunov varia continuamente. Apresentamos detalhadamente todos os resultados de Andersson-Carrasco-Saghin. Tais resultados incluem a existência de endomorfismos estavelmente ergódicos (de fato são Bernoulli) em cada classe de homotopia na qual existência de robusta hiperbolicidade não uniforme é provada. Também incluímos aspectos gerais desta Teoria e algumas especificidades do toro bidimensional. Em particular, expomos aqui como a extensão natural de endomorfismos na mesma classe de homotopia pode ser canonicamente identificados com um Solenoide, desde que sejam recobrimentos normais. Esta é uma técnica de grande importância na teoria ergódica diferenciável.

Assunto

Matemática – Teses, Teoria ergódica – Teses, Sistemas dinâmicos – Teses

Palavras-chave

Non-uniform hyperbolicity, Lyapunov exponents, Stable ergodicity, Non-invertible dynamical systems

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por