Nilpotent linearized polynomials over finite fields and applications
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Polinômios linearizados nilpotentes sobre campos finitos e aplicações
Primeiro orientador
Membros da banca
Resumo
Let q be a prime power and Fqn be the finite field with qn elements, where n > 1. We introduce the class of the linearized polynomials L(X) over Fqn such that [...] for some , called nilpotent linearized polynomials (NLP's). We discuss the existence and construction of NLP's and, as an application, we show how to obtain permutations of Fqn from these polynomials. For some t >2 of those permutations, we can explicitly give the compositional inverse map and the cycle decomposition. This paper also contains a method for constructing involutions over binary fields with no fixed points, which are useful in block ciphers.
Abstract
Seja q uma potência primária e Fqn o corpo finito com elementos qn, onde n> 1. Introduzimos a classe dos polinômios linearizados L (X) sobre Fqn de tal forma que [...], para alguns, são chamados polinômios linearizados nilpotentes (PNL). Discutimos a existência e construção de PNL's e, como aplicação, mostramos como obter permutações de Fqn a partir desses polinômios. Para alguns t> 2 dessas permutações, podemos dar explicitamente o mapa inverso da composição e a decomposição do ciclo. Este artigo também contém um método para construir involuções sobre campos binários sem pontos fixos, que são úteis em cifras de bloco.
Assunto
Polinômios, Grupos nilpotentes, Grupos finitos
Palavras-chave
Linearized polynomials, Permutation polynomials, Cycle decomposition, Involutions
Citação
Departamento
Curso
Endereço externo
https://www.sciencedirect.com/science/article/abs/pii/S1071579717301557?via%3Dihub