Identidades de Hsiung-Minkowski e aplicações geométricas

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Marcos da Silva Montenegro
Emerson Alves Mendonça de Abreu
Rodney Josue Biezuner

Resumo

Neste trabalho, provaremos resultados obtidos por Robert C. Reilly no artigo [30], os resultados obtidos são no contexto de subvariedades do espaço Euclidiano compactas e sem bordo. A princípio, mostramos uma generalização da curvatura média conforme [30], criando as r-ésimas curvaturas médias (.)r, que podem ter valores reais ou vetoriais. As fórmulas de Hsiung-Minkowski são identidades conhecidas em análise geométrica. Em 1954, Hsiung provou essa identidade para subvariedades do espaço Euclidiano de codimensão 1, compactas e sem bordo, no artigo [17]. Provaremos esse resultado para subvariedades de codimensão qualquer, como feito em [30]. Em uma variedade, nem sempre é possível obter valor exato do primeiro autovalor do Laplaciano. Utilizando o princípio do mínimo e as fórmulas de Hsiung-Minkowski, encontramos cotas superiores para esse autovalor, desigualdades, as quais, também classificam a variedade, com teoremas do tipo "esfera". No primeiro capítulo, registramos resultados básicos de geometria Riemanniana, que são úteis para o capítulo final. O segundo capítulo trata de subvariedades, a referência que mais utilizamos para a sua escrita foi [12]. O trabalho consta ainda de dois apêndices, nos quais, veremos uma demonstração da desigualdade de Wirtinger para o R2, , que junto com outra desigualdade que será vista no último capítulo, nos dá a desigualdade isoperimétrica para curvas suaves. No segundo apêndice sera visto um cálculo explicito do primeiro autovalor do Laplaciano no caso da esfera.

Abstract

Assunto

Matemática, Geometria riemaniana, Espaço euclidiano, Operador laplaciano, Análise geométrica, Desigualdades (Matematica), Subvariedades

Palavras-chave

Matemática

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por