Multi-objective decision in machine learning

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

This work presents a novel approach for decision-making for multi-objective binary classification problems. The purpose of the decision process is to select within a set of Pareto-optimal solutions, one model that minimizes the structural risk (generalization error). This new approach utilizes a kind of prior knowledge that, if available, allows the selection of a model that better represents the problem in question. Prior knowledge about the imprecisions of the collected data enables the identification of the region of equivalent solutions within the set of Pareto-optimal solutions. Results for binary classification problems with sets of synthetic and real data indicate equal or better performance in terms of decision efficiency compared to similar approaches.

Abstract

Assunto

Inteligência artificial, Aprendizado do computador, Sistemas especialistas (Computação), Recuperação da informação

Palavras-chave

knowledge is effectively applied to model a decision mechanism in the Pareto-optimal set, the method MOBJ-htnn was developed with the intention of enabling the use of the knowledge about the inherent imprecision of the data acquisition process

Citação

Curso

Endereço externo

https://link.springer.com/article/10.1007/s40313-016-0295-6

Avaliação

Revisão

Suplementado Por

Referenciado Por