Comparação de estratégias de geração de propostas no algoritmo Metropolis-Hastings para um modelo Poisson log-linear

dc.creatorEstevão Batista do Prado
dc.date.accessioned2019-08-14T06:22:35Z
dc.date.accessioned2025-09-08T23:18:25Z
dc.date.available2019-08-14T06:22:35Z
dc.date.issued2016-02-26
dc.description.abstractThe Markov Chain Monte Carlo methods (MCMC) are a class of simulation algorithms widely used in Bayesian inference to indirectly draw samples from the posterior distribution, which is known up to a constant of proportionality. The random walk Metropolis- Hastings algorithm is a popular case providing good posterior estimates if the covariance matrix of the proposal distribution is well specied. In high dimensional situations, the specification of this matrix is not trivial. This dissertation aims to carry out comparisons between dierent strategies to generate candidates through Metropolis-Hastings algorithms, that basically dier in terms of the choice of covariance matrix of the proposaldistribution. Adaptive and non-adaptive algorithms are considered. The comparison is made through a simulation study and an analysis of real data set using a Poisson log-linear model with longitudinal count structure. The criteria used to evaluate the performance of the algorithms are: the eective sample size, which is a function of the chain's autocorrelation, and the accuracy of the posterior point and interval estimates. In general, numerical results show that the algorithms estimate well the parameters of interest and they dier with respect to the mixing of the chains and to the computational time, especially the adaptive cases: Adaptive Metropolis, Robust Adaptive Metropolisand Iterative Weighted Least Squares Metropolis.
dc.identifier.urihttps://hdl.handle.net/1843/BUBD-A9ZGXY
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectMétodo de Monte Carlo
dc.subjectEstatística
dc.subjectMetodos de simulação
dc.subjectMarkov, processos de
dc.subjectEstatistica
dc.subjectMarkov, Processos de
dc.subjectMétodos de simulação
dc.subjectInferencia (Logica)
dc.subjectInferência (Lógica)
dc.subject.otherMetropolis adaptativo
dc.subject.otherInferência Bayesiana
dc.subject.otherSimulação
dc.subject.otherMétodos MCMC
dc.titleComparação de estratégias de geração de propostas no algoritmo Metropolis-Hastings para um modelo Poisson log-linear
dc.typeDissertação de mestrado
local.contributor.advisor1Vinicius Diniz Mayrink
local.contributor.referee1Fabio Nogueira Demarqui
local.contributor.referee1Thais Paiva Galletti
local.contributor.referee1Marcelo Azevedo Costa
local.description.resumoOs métodos de Monte Carlo via Cadeias de Markov (MCMC) são uma classe de algoritmos de simulação que, no contexto de inferência Bayesiana, são comumente utilizados para gerar amostras de forma indireta de uma distribuição à posteriori da qual conhecemos apenas o núcleo. O algoritmo Metropolis-Hastings Random Walk e um algoritmoMCMC bastante utilizado no contexto Bayesiano, e que gera bons resultados de estimativas à posteriori se a matriz de covariâncias da distribuição de propostas é bem especificada. Em situações de alta dimensão, a escolha dessa matriz não é trivial. Este trabalho tem como objetivo principal comparar diferentes estratégias com relação ageração de valores candidatos no Metropolis-Hastings que se diferem, basicamente, pela especificação da matriz de covariâncias da distribuição de propostas. Algoritmos adaptativos e não-adaptativos serão considerados. A comparação dos algoritmos é feita emcenário de simulação e em uma análise de dados reais com o modelo Poisson log-linear em um problema para dados de contagem com estrutura longitudinal. Os critérios utilizados para avaliar a performance dos métodos foram: o tamanho efetivo da amostra, que é uma função da correlação das cadeia dos parâmetros, e a precisão das estimativas pontuais e intervalares a posteriori. De forma geral, os resultados numéricos mostram que os algoritmos estimam bem os parâmetros de interesse e se diferenciam quanto ao mixing das cadeias e ao tempo computacional. Destaque para as opções adaptativas AdaptiveMetropolis, Robust Adaptive Metropolis e Iterative Weighted Least Squares Metropolis.
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
principal.pdf
Tamanho:
1.14 MB
Formato:
Adobe Portable Document Format