Aplicações de grau um do círculo: conjunto de rotação e entropia
Carregando...
Arquivos
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Dissertação de mestrado
Título alternativo
Primeiro orientador
Membros da banca
Krerley Oliveira
Alberto Berly Sarmiento Vera
Alberto Berly Sarmiento Vera
Resumo
O conceito de número de rotação de homeomorfismos que preservam orientação no círculo foi introduzido por Poincaré, e se mostrou uma ferramenta muito útil para se descrever a dinâmica de tais aplicações. Neste caso, a dinâmica é topologicamente muito simples e caracterizada pelo número de rotação. Quando este número é racional, sempre existem órbitas periódicas, todas com o mesmo período, e todas as órbitas são homoclínicas ou heteroclínicas às órbitas periódicas. Quando o número de rotação é irracional, não existem órbitas periódicas e todas as órbitas se "ordenam" como as órbitas de uma rotação irracional de mesmo número. Além disso, ou todas são densas, ou existem intervalos errantes e um conjunto minimal, onde todas as outras órbitas nascem e morrem.
Abstract
Assunto
Matemática, Sistemas dinâmicos diferenciais
Palavras-chave
Sistemas dinâmicos diferenciais