Sobre gonalidade, modelos canônicos e scrolls
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Andre Luis Contiero
Mauricio Barros Correa Junior
Danielle Franco Nicolau Lara
Ethan Guy Cotterill
Simone Marchesi
Mauricio Barros Correa Junior
Danielle Franco Nicolau Lara
Ethan Guy Cotterill
Simone Marchesi
Resumo
Seja C uma curva inteira e projetiva; e seja C' seu modelo canônico. Estudaremos a relação entre a gonalidade de C e a dimensão de um scroll racional normal S que pode conter C'. O nosso maior interesse está no caso em que C é singular, ou mais ainda não-Gorenstein,em tal caso (...). Em um primeiro momento analisamos algumas propriedades de uma inclusão (...) quando esta é induzida por um pencil em C. Depois, na direção oposta, assumimos que C' está contida em certo scroll, e verificamos algumas propriedades que C deve satisfazer, tais como gonalidade e o tipo de suas singularidades. Por fim, provamos que uma curva monomial racional C tem gonalidade d se e somente se C' está contida em um scroll de dimensão d - 1.
Abstract
Let C be an integral and projective curve; and let C' be its canonical model. We study the relation between the gonality of C and the dimension of a rational normal scroll S where C' can lie on. We are mainly interested in the case where C is singular, or even non-Gorenstein, in which case (...). We first analyze some properties of an inclusion (...) when it is induced by a pencil on C. Afterwards, in an opposite direction, weassume C' lies on a certain scroll, and check some properties C may satisfy, such as gonality and the kind of its singularities. At the end, we prove that a rational monomial curve C has gonality d if and only if C' lies on a (d -1)-fold scroll.
Assunto
Matemática, Curvas algébricas
Palavras-chave
modelo canônico, scroll, curva não-Gorenstein, gonalidade