The multiscale hybrid mixed method for parabolic problems

dc.creatorLucas Martins Rocha
dc.date.accessioned2024-04-20T00:09:55Z
dc.date.accessioned2025-09-09T00:40:52Z
dc.date.available2024-04-20T00:09:55Z
dc.date.issued2023-11-21
dc.description.abstractThis thesis aims to generalize the Multiscale Hybrid Mixed method (MHM) for parabolic partial differential equations. This numerical method is based on a primal variational formulation of the problem, where the continuity of the solution on the boundary of the space-time mesh is enforced thru the use of Lagrange multipliers either for space and time. Such approach leads to the formulation of a coupled system of global-local equations, where the solution is the same as the solution of the original problem. The solutions of the local equations turn into a basis used to solve the global problem, and due to the independence of such solutions, they can be numerically approximated in parallel, while capturing the in formation from the fine scales. Since the solutions are obtained thru a time marching scheme, the flexibility of the method reflects on the possibility to use different space-time partitions to approximate numerically the solution on each time interval. Besides, the error estimates for the first level discretization obtained in this work show that the spatial and temporal convergence rates are related to the discretization parameters of the space-time mesh, as well as the degree of the polynomials used to approximate the Lagrange multipliers over the boundary of the mesh.
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.identifier.urihttps://hdl.handle.net/1843/67522
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectMatemática - Teses
dc.subjectEquações diferenciais parciais - Teses
dc.subjectLagrange, Multiplicadores de – Teses
dc.subject.otherMHM
dc.subject.otherParabolic MHM
dc.subject.otherMultiscale methods
dc.titleThe multiscale hybrid mixed method for parabolic problems
dc.title.alternativeO método multiescala híbrido misto para problemas parabólicos
dc.typeTese de doutorado
local.contributor.advisor-co1Frédéric Gerard Christian Valentin
local.contributor.advisor1Henrique de Melo Versieux
local.contributor.advisor1Latteshttp://lattes.cnpq.br/1660569320735427
local.contributor.referee1Alexandre Loureiro Madureira
local.contributor.referee1Denise Bulgarelli Duczmal
local.contributor.referee1Juan Galvis A.
local.contributor.referee1Luccas Cassimiro Campos
local.creator.Latteshttp://lattes.cnpq.br/8616787211891863
local.description.resumoEssa Tese tem como objetivo generalizar o método Multiescala Híbrido Misto (MHM) para equações diferenciais parciais parabólicas. Esse método numérico se baseia na formulação variacional híbrida primal do problema, onde a continuidade das soluções na fronteira dos elementos da malha espaço-tempo é imposta pelo uso de multiplicadores de Lagrange tanto para o espaço, quanto para o tempo. Tal abordagem conduz na formulação de um sistema acoplado de equações locais e globais, cuja solução é a mesma do problema original. As soluções das equações locais formam uma base para o problema global, podendo ser calculadas numericamente em paralelo e naturalmente incorporando as informações das escalas mais finas. Como as soluções são obtidas através de um esquema de marcha no tempo, a flexibilidade do método se reflete na possibilidade de utilizar diferentes partições espaço-tempo para aproximar a solução numérica em cada intervalo de tempo. Além disso, as estimativas de erro obtidas pela análise de convergência do primeiro nível de discretização mostram que as taxas de convergência espacial e temporal estão ligadas aos parâmetros de discretização da malha espaço-tempo, bem como aos graus dos polinômios utilizados para aproximar os multiplicadores de Lagrange na fronteira da malha.
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE MATEMÁTICA
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Matemática

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
TheMultiscaleHybridMixedMethodForParabolicProblems.pdf
Tamanho:
4.5 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: