O método do grupo de renormalização para equações de evolução com termos não lineares dependentes de derivadas

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Jussara de Matos Moreira
Marcos da Silva Montenegro
Paulo Cesar Carrião

Resumo

Considere o seguinte problema de valor inicial ut = uxx + uaub xuc xx; t > 1; x 2 R u(x; 1) = f(x); onde 2 R; 2 [1; 1], a; b; c são números inteiros não-negativos e f é o dado inicial. Nesta dissertação provaremos que, para tempos su cientemente longos, a solução do PVI acima se comporta como u(x; t) A p 4t ex2 4t desde que a + 2b + 3c > 3 e desde que o dado inicial seja pequeno em um certo sentido que detalharemos posteriormente. Acima, o pré-fator A carrega toda a informação sobre o dado inicial e a não-linearidade da equação. O caráter universal do comportamento assintótico está contido no per l de decaimento da solução. A prova se baseia na técnica do Grupo de Renormalização desenvolvida por Bricmont et al em [1], que nos permite extrair as informações descritas acima através de um processo em escalas múltiplas.

Abstract

Assunto

Matemática, Grupo de renormalização, Fourier, Transformações de

Palavras-chave

Matemática

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por