Some results on a pseudo-relativistic Hartree equation and on a magnetic Choquard equation

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Aldo Henrique de Souza Medeiros
Fábio Rodrigues Pereira

Resumo

In the first part of this work, we consider the asymptotically linear, strongly coupled nonlinear system By applying the Nehari-Pohozaev manifold, we prove that our system has a ground state solution. We also prove that solutions of this system are radially symmetric and belong to C^(0,μ) ( R N ) for some 0 < μ < 1 and each N > 1. In the final part of the work, we consider the stationary magnetic nonlinear Choquard equation −(∇ + iA ( x ))^(1/2) u + V ( x ) u =(1/|x|^(\alpha)∗ F (| u |))f (| u |) u/|u|. where A : R N → R N is a vector potential, V is a scalar potential, f : R → R and F is the primitive of f . Under mild hypotheses, we prove the existence of a ground state solution for this problem. We also prove a simple multiplicity result by applying Ljusternik–Schnirelmann methods.

Abstract

Assunto

Matemática – Teses, Equações diferenciais parciais – Teses, Princípios variacionais – Teses

Palavras-chave

Pohozaev Identity, Fractional laplacian, Choquard equation, Splitting lemma

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por