Some results on a pseudo-relativistic Hartree equation and on a magnetic Choquard equation
| dc.creator | Guido Gutierrez Mamani | |
| dc.date.accessioned | 2021-02-09T19:03:04Z | |
| dc.date.accessioned | 2025-09-08T23:30:20Z | |
| dc.date.issued | 2020-11-03 | |
| dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | |
| dc.identifier.uri | https://hdl.handle.net/1843/34971 | |
| dc.language | eng | |
| dc.publisher | Universidade Federal de Minas Gerais | |
| dc.rights | Acesso Restrito | |
| dc.subject | Matemática – Teses | |
| dc.subject | Equações diferenciais parciais – Teses | |
| dc.subject | Princípios variacionais – Teses | |
| dc.subject.other | Pohozaev Identity | |
| dc.subject.other | Fractional laplacian | |
| dc.subject.other | Choquard equation | |
| dc.subject.other | Splitting lemma | |
| dc.title | Some results on a pseudo-relativistic Hartree equation and on a magnetic Choquard equation | |
| dc.type | Tese de doutorado | |
| local.contributor.advisor-co1 | Gilberto de Assis Pereira | |
| local.contributor.advisor1 | Hamilton Prado Bueno | |
| local.contributor.advisor1Lattes | http://lattes.cnpq.br/0867903003222790 | |
| local.contributor.referee1 | Aldo Henrique de Souza Medeiros | |
| local.contributor.referee1 | Fábio Rodrigues Pereira | |
| local.creator.Lattes | http://lattes.cnpq.br/3828899577351511 | |
| local.description.embargo | 2021-11-03 | |
| local.description.resumo | In the first part of this work, we consider the asymptotically linear, strongly coupled nonlinear system By applying the Nehari-Pohozaev manifold, we prove that our system has a ground state solution. We also prove that solutions of this system are radially symmetric and belong to C^(0,μ) ( R N ) for some 0 < μ < 1 and each N > 1. In the final part of the work, we consider the stationary magnetic nonlinear Choquard equation −(∇ + iA ( x ))^(1/2) u + V ( x ) u =(1/|x|^(\alpha)∗ F (| u |))f (| u |) u/|u|. where A : R N → R N is a vector potential, V is a scalar potential, f : R → R and F is the primitive of f . Under mild hypotheses, we prove the existence of a ground state solution for this problem. We also prove a simple multiplicity result by applying Ljusternik–Schnirelmann methods. | |
| local.publisher.country | Brasil | |
| local.publisher.department | ICEX - INSTITUTO DE CIÊNCIAS EXATAS | |
| local.publisher.initials | UFMG | |
| local.publisher.program | Programa de Pós-Graduação em Matemática |