Geometric structures on 3-dimensional manifolds

dc.creatorSergio Andrés Pinillos Prado
dc.date.accessioned2022-01-25T15:33:32Z
dc.date.accessioned2025-09-09T01:30:17Z
dc.date.available2022-01-25T15:33:32Z
dc.date.issued2021-07-22
dc.description.abstractO trabalho é focado no estudo de estruturas geométricas sobre variedades de dimensão três. O objetivo principal é a descrição das oito geometrias dadas pelo teorema de Thurston: Existem oito geometrias modelo de dimensão três (G,X) como se segue: (a) Se os estabilizadores ponto tiverem de dimensão três, X é S^3, R^3, H^3. (b) Se os estabilizadores ponto tiverem de dimensão um, X fibra sobre uma das geometrias de dimensão dois, de uma forma que é invariável pela ação de G. Além disso, há uma métrica Riemanniana invariante de G sobre X, de tal forma que a conexão ortogonal às fibras tem curvatura 0 ou 1. (b1) Se a curvatura é zero, X é S^2 x R ou H^2 x R. (b2) Se a curvatura é 1, têmos a nilgeometria (que fibra sobre R^2) ou a geometria do recobrimento universal de SL(2,R) (c) A única geometria que tem estabilizadores ponto de dimensão zero é a geometria Sol, que fibra sobre a linha. Além disso, também daremos exemplos de variedades compactas de dimensão três modeladas sobre cada uma daquelas geometrias e apresentaremos alguns exemplos interessantes de variedades modeladas em H^3$ o 3-espaço hiperbólico.
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
dc.identifier.urihttps://hdl.handle.net/1843/39162
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/
dc.subjectMatemática – Teses.
dc.subjectVariedades (Matemática) –Teses.
dc.subjectGeometria - Modelos – Teses.
dc.subjectEspaços hiperbolicos – Teses.
dc.subject.other3-dimensional manifolds
dc.subject.otherModel geometries
dc.subject.other3-hyperbolic space
dc.titleGeometric structures on 3-dimensional manifolds
dc.title.alternativeGeometric structures on 3-manifolds
dc.title.alternativeEstruturas geométricas em variedades tridimensionais
dc.title.alternativeEstructuras geométricas em variedades tridimensionales
dc.typeDissertação de mestrado
local.contributor.advisor1Nikolai Alexandrovitch Goussevskii
local.contributor.advisor1Latteshttp://lattes.cnpq.br/2297621504562214
local.contributor.referee1Mauricio Barros Corrêa Júnior
local.contributor.referee1Victor Guerassimov
local.creator.Latteshttp://lattes.cnpq.br/6753961650995849
local.description.resumoThe work is focused on the study of geometric structures on 3-dimensional manifolds. The main objective is the description of the eight three-dimensional geometries given by the Thurston's theorem.There are eight three-dimensional model geometries $(G,X)$, as follows: (a) If the point stabilizers are 3-dimensional, X is S^3, R^3, H^3. (b) If the point stabilizers are 1-dimensional, X fibers over one of the two dimensional model geometries, in a way that is invariant under G. There is a G-invariant Riemannian metric on X such that the connection orthogonal to the fibers has curvature 0 or 1. (b1) If the curvature is zero, X is S^2 x R or H^2 x R. (b2) If the curvature is 1, we have nilgeometry (wich fibers over R^2) or the geometry of the universal cover of SL(2,R) (c) The only geometry with $0$-dimensional stabilizers is solvegeometry, which fibers over the line. Moreover, we will also give examples of compact 3-dimensional manifolds modeled on each one of these geometries and we shall present some interesting examples of manifolds modeled in H^3, the 3-hyperbolic space.
local.publisher.countryBrasil
local.publisher.departmentICX - DEPARTAMENTO DE MATEMÁTICA
local.publisher.initialsUFMG
local.publisher.programPrograma de Pós-Graduação em Matemática

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
Disertación.pdf
Tamanho:
1.45 MB
Formato:
Adobe Portable Document Format

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.07 KB
Formato:
Plain Text
Descrição: