Categorical and geometrical methods in physics

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Métodos categóricos e geométricos em física

Primeiro orientador

Membros da banca

Mário Jorge Dias Carneiro
Fábio Dadam
Helvécio Geovani Fargnoli Filho

Resumo

In this work we develop the higher categorical language aiming to apply it in the foundations of physics, following an approach based in works of Urs Schreiber, John Baez, Jacob Lurie, Daniel Freed and many other, whose fundamental references are [182, 20, 124, 127, 125]. The text has three parts. In Part I we introduce categorical language with special focus in algebraic topological aspects, and we discuss that it is not abstract enough to give a full description for the foundations of physics. In Part II we introduce the categorical process, which produce an abstract language from a concrete language. Examples are given, again focused on Algebraic Topology. In Part III we use the categorification process in order to construct arbitrarily abstract languages, the higher categorical ones, including the cohesive ∞-topos. An emphasis on the formalization of abstract stable homotopy theory is given. We discuss the reason why we should believe that cohesive ∞-topos are natural languages to use in order to attack Hilbert’s sixth problem.

Abstract

Neste trabalho, desenvolvemos a linguagem categórica em altas dimensões visando aplicá- la nos fundamentos da física, seguindo uma abordagem baseada em obras de Urs Schreiber, John Baez, Jacob Lurie, Daniel Freed, e muitos outros, cujas referências fundamentais são [182, 20, 124, 127, 125]. O texto possui três partes. Na Parte I, introduzimos a linguagem categórica, com foco especial em aspectos algebro-topológicos, e discutimos que esta linguagem não é abstrata o bastante para fornecer uma descrição completa dos fundamentos da física. Na Parte II, introduzimos o processo de categorificação, o qual produz linguagens abstratas a par- tir de linguagens concretas. Exemplos são dados, novamente focando na Topologia Algébrica. Na Parte III, usamos o processo de categorificação para construir linguagens arbitrariamente abstratas (as linguagens categóricas em altas dimensões), incluindo os ∞-topos coesivos. Um enfoque na formalização da teoria da homotopia estável abstrata é dado. Discutimos a razão pela qual se deveria acreditar que os ∞-topos coesivos são linguagens naturais a serem usadas para atacar o sexto problema de Hilbert.

Assunto

Matemática – Teses, Topologia algébrica – Teses, Física matemática – Teses

Palavras-chave

string theory, higher topos theory, differential cohomology, quantization, Hilbert's sixth problem

Citação

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por