Índice de rotação e teorema dos quatro vértices

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Monografia de especialização

Título alternativo

Primeiro orientador

Membros da banca

Eduardo Alfonso Chincaro Egusquiza
Heleno da Silva Cunha

Resumo

Este tema foi escolhido na busca de um melhor entendimento sobre o assunto. Dentro da Teoria de Curvas planas da Geometria Diferencial encontramos o teorema dos Quatro Vértices e o índice de rotação, um resultado clássico que garante a existência de pelo menos quatro vértices em uma curva plana simples e fechada, onde um vértice é um extremo relativo da curvatura. E o número de rotação de uma curva mede o número de voltas que o vetor tangente dá em torno da origem. O teorema dos quatro vértices possui elevada importância no contexto das aplicações da teoria das curvas planas, e foi demonstrado por Mukhopadhyaya em 1909, apenas para curvas planas estritamente convexas, e em 1912, Adolf Kneser o demonstrou para todas as curvas simples e fechadas no plano, não somente para as estritamente convexas. Esta monografia está organizada em dois capítulos. No primeiro, faz-se uma introdução dos conceitos básicos que serão necessários ao longo deste trabalho, tais como curvas planas parametrizadas, ciclóide, hipociclóide, reparametrização, curvas diferenciáveis, comprimento do arco e curvatura de uma curva. No segundo, faz-se um estudo detalhado sobre o teorema dos quatro vértices e o índice de rotação.

Abstract

Assunto

Matemática, Geometria diferencial, Curvas planas

Palavras-chave

Matemática para Professores

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por