Silicon nanomembranes with hybrid crystal orientations and strain states
| dc.creator | Shelley A. Scott | |
| dc.creator | Max G. Lagally | |
| dc.creator | Christoph Friedrich Deneke | |
| dc.creator | Deborah M. Paskiewicz | |
| dc.creator | Hyuk Ju Ryu | |
| dc.creator | Ângelo Malachias de Souza | |
| dc.creator | Stefan Baunack | |
| dc.creator | Oliver G. Schmidt | |
| dc.creator | Donald E. Savage | |
| dc.creator | Mark A. Eriksson | |
| dc.date.accessioned | 2023-03-10T13:15:48Z | |
| dc.date.accessioned | 2025-09-09T01:25:58Z | |
| dc.date.available | 2023-03-10T13:15:48Z | |
| dc.date.issued | 2017 | |
| dc.description.sponsorship | CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico | |
| dc.description.sponsorship | FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo | |
| dc.identifier.doi | https://doi.org/10.1021/acsami.7b14291 | |
| dc.identifier.issn | 1944-8252 | |
| dc.identifier.uri | https://hdl.handle.net/1843/50789 | |
| dc.language | eng | |
| dc.publisher | Universidade Federal de Minas Gerais | |
| dc.relation.ispartof | ACS Applied Materials & Interfaces | |
| dc.rights | Acesso Restrito | |
| dc.subject | Epitaxia | |
| dc.subject | Nanomembranas | |
| dc.subject | Interfaces (Ciências fisicas) | |
| dc.subject.other | Epitaxy | |
| dc.subject.other | Selective growth | |
| dc.subject.other | Hybrid crystalline materials | |
| dc.subject.other | Silicon nanomembranes | |
| dc.subject.other | Interfaces | |
| dc.subject.other | Strain engineering | |
| dc.title | Silicon nanomembranes with hybrid crystal orientations and strain states | |
| dc.type | Artigo de periódico | |
| local.citation.epage | 42382 | |
| local.citation.issue | 48 | |
| local.citation.spage | 42372 | |
| local.citation.volume | 9 | |
| local.description.resumo | Methods to integrate different crystal orientations, strain states, and compositions of semiconductors in planar and preferably flexible configurations may enable nontraditional sensing-, stimulating-, or communication-device applications. We combine crystalline-silicon nanomembranes, patterning, membrane transfer, and epitaxial growth to demonstrate planar arrays of different orientations and strain states of Si in a single membrane, which is then readily transferable to other substrates, including flexible supports. As examples, regions of Si(001) and Si(110) or strained Si(110) are combined to form a multicomponent, single substrate with high-quality narrow interfaces. We perform extensive structural characterization of all interfaces and measure charge-carrier mobilities in different regions of a 2D quilt. The method is readily extendable to include varying compositions or different classes of materials. | |
| local.identifier.orcid | https://orcid.org/0000-0002-1263-011X | |
| local.identifier.orcid | https://orcid.org/0000-0002-8556-386X | |
| local.identifier.orcid | https://orcid.org/0000-0002-8703-4283 | |
| local.identifier.orcid | https://orcid.org/0000-0002-6628-0696 | |
| local.identifier.orcid | https://orcid.org/0000-0001-9503-8367 | |
| local.identifier.orcid | https://orcid.org/0000-0001-8515-4196 | |
| local.identifier.orcid | https://orcid.org/0000-0002-3130-9735 | |
| local.publisher.country | Brasil | |
| local.publisher.department | ICX - DEPARTAMENTO DE FÍSICA | |
| local.publisher.initials | UFMG | |
| local.url.externa | https://pubs.acs.org/doi/10.1021/acsami.7b14291 |
Arquivos
Licença do pacote
1 - 1 de 1