Pares de subespaços em Rn

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Monografia de especialização

Título alternativo

Primeiro orientador

Membros da banca

Alberto Berly Sarmiento Vera
Viktor Bekkert

Resumo

Dados dois pares (U; V ) e (U0; V 0) de subespaços vetoriais de Rn, caracterizamos a existência de uma isometria f de Rn tal que f(U) = U0 e f(V ) = V 0. De fato, demonstramos que uma tal isometria existe se, e somente se, os ângulos principais do par (U; V ) são iguais aos ângulos principais do par (U0; V 0). Mais ainda, se consideramos pares de subespaços afins, transladados de subespaços vetoriais, demonstramos que existe uma isometria entre dois pares de tais subespaços se, e somente se, além da igualdade dos ângulos principais tem-se a igualdade da distância entre os subespaços.

Abstract

Assunto

Matemática

Palavras-chave

Matemática

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por