Unintrusive aging analysis based on offline learning

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Artigo de evento

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Runtime aging analysis of integrated circuits enables adaptive approaches in order to enhance the system's life time and permits the user to be aware of critical states. Common approaches utilize sensors that are integrated invasively into critical paths or report experienced aging. This work presents a lightweight supportive technique that correlates environmental and internal conditions with learned data in order to predict the actual wear-out of the system. Simulation results indicate the feasibility of the approach with prediction errors below 10%.

Abstract

Assunto

Aprendizado do computador, Máquinas elétricas

Palavras-chave

Aging , Temperature sensors , Stress , Temperature measurement , Monitoring , Integrated circuit modeling, Machine Learning, Reliability , Remaining Useful Lifetime , NBTI , TDDB, Offline Learning , Prediction Error , Critical Conditions , Critical Path , System Lifetime , General Linear Model , Inverter , Strategies In Order , Field Of Systems , Supply Voltage , Stress Sensor , Frequency Scale , Active Switches , Age Profile , Hot Electrons , Voltage Stress , Mean Time To Failure , Voltage Scaling , Remaining Useful Life , Principal Idea , Supply Temperature

Citação

Curso

Endereço externo

https://ieeexplore.ieee.org/document/8244453

Avaliação

Revisão

Suplementado Por

Referenciado Por