Unintrusive aging analysis based on offline learning

dc.creatorFrank Sill Torres
dc.creatorPedro Fausto Rodrigues Leite
dc.creatorRolf Drechsler
dc.date.accessioned2025-04-02T15:44:54Z
dc.date.accessioned2025-09-08T23:47:59Z
dc.date.available2025-04-02T15:44:54Z
dc.date.issued2017
dc.identifier.doi10.1109/DFT.2017.8244453
dc.identifier.urihttps://hdl.handle.net/1843/81229
dc.languageeng
dc.publisherUniversidade Federal de Minas Gerais
dc.relation.ispartofInternational Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)
dc.rightsAcesso Restrito
dc.subjectAprendizado do computador
dc.subjectMáquinas elétricas
dc.subject.otherAging , Temperature sensors , Stress , Temperature measurement , Monitoring , Integrated circuit modeling
dc.subject.otherMachine Learning, Reliability , Remaining Useful Lifetime , NBTI , TDDB
dc.subject.otherOffline Learning , Prediction Error , Critical Conditions , Critical Path , System Lifetime , General Linear Model , Inverter , Strategies In Order , Field Of Systems , Supply Voltage , Stress Sensor , Frequency Scale , Active Switches , Age Profile , Hot Electrons , Voltage Stress , Mean Time To Failure , Voltage Scaling , Remaining Useful Life , Principal Idea , Supply Temperature
dc.titleUnintrusive aging analysis based on offline learning
dc.typeArtigo de evento
local.citation.epage6
local.citation.spage1
local.description.resumoRuntime aging analysis of integrated circuits enables adaptive approaches in order to enhance the system's life time and permits the user to be aware of critical states. Common approaches utilize sensors that are integrated invasively into critical paths or report experienced aging. This work presents a lightweight supportive technique that correlates environmental and internal conditions with learned data in order to predict the actual wear-out of the system. Simulation results indicate the feasibility of the approach with prediction errors below 10%.
local.publisher.countryBrasil
local.publisher.departmentENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
local.publisher.initialsUFMG
local.url.externahttps://ieeexplore.ieee.org/document/8244453

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
License.txt
Tamanho:
1.99 KB
Formato:
Plain Text
Descrição: