Photoelastic and finite element stress analysis reliability for implant-supported system stress investigation
Carregando...
Data
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Artigo de periódico
Título alternativo
Primeiro orientador
Membros da banca
Resumo
Aim: To compare the reliability between photoelastic and finite element (FE) analyses by evaluating the effect of different marginal misfit levels on the stresses generated on two different implant-supported systems using conventional and short implants. Methods: Two photoelastic models were obtained: model C with two conventional implants (4.1×11 mm); and model S with a conventional and a short implant (5×6 mm). Three-unit CoCr frameworks were fabricated simulating a superior first pre-molar (P) to first molar (M) fixed dental prosthesis. Different levels of misfit (μm) were selected based on the misfit average of 10 frameworks obtained by the single-screw test protocol: low (<20), medium (>20 and <40) and high (>40). Stress levels and distribution were measured by photoelastic analysis. A similar situation of the in vitro assay was designed and simulated by the in silico analysis. Maximum and minimum principal strain were recorded numerically and color-coded for the models. Von Mises Stress was obtained for the metallic components. Results:Photoelasticity and FE analyses showed similar tendency where the increase of misfit generates higher stress levels despite of the implant design. The short implant showed lower von Mises stress values; however, it presented stresses around its full length for the in vitro and in silico analysis. Also, model S showed higher μstrain values for all simulated misfit levels. The type of implant did not affect the stresses around pillar P. Conclusions:Photoelasticity and FEA are reliable methodologies presenting similarity for the investigation of the biomechanical behavior of implant-supported rehabilitations.
Abstract
Assunto
Biomechanical phenomena, Dental Implants, Optical phenomena, Finite element analysis
Palavras-chave
Biomechanical phenomena, Dental Implants, Optical phenomena, Finite element analysis
Citação
Departamento
Curso
Endereço externo
https://periodicos.sbu.unicamp.br/ojs/index.php/bjos/article/view/8652941/0