Sobre o grau de componentes dos espaços das folheações holomorfas de codimensão um em CPn
Carregando...
Data
Autor(es)
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal de Minas Gerais
Descrição
Tipo
Tese de doutorado
Título alternativo
Primeiro orientador
Membros da banca
Mauricio Barros Correa Junior
André Luis Contiero
Severino Collier Coutinho
Hamid Hassanzadeh
André Luis Contiero
Severino Collier Coutinho
Hamid Hassanzadeh
Resumo
Dois dos principais invariantes discretos de uma variedade projetiva são a dimensão e o grau. Os espaços de folheações holomorfas de codimensão um e grau d no espaço projetivo complexo CPn, n 3 são subesquemas do espação projetivo CP (H0(Pn;1(d + 1)))definidos pelas equações da condição de integrabilidade, w ^ dw = 0.Nesta tese determinamos os graus de certas componentes dos espaços de folheações holomorfas de codimensão um em CPn, n 3. Para cada inteiro r 1, seja R(2; 2r + 1) o conjunto das folheações induzidas por 1-formas do tipo 2FdG (2r + 1)GdF, onde F;G denotam polinômios homogêneos de graus 2; 2r + 1. X. Gomez-Mont e A. LinsNeto mostraram em [2] que R(2; 2r + 1) e uma componente irredutível do espaço das folheações holomorfas de grau 2r + 1. Mais tarde, J. V. Pereira, F. Cukierman e I. Vainsencher mostraram em [5] que essa componente é racional e genericamente reduzida.Estes calcularam o grau dessa componente para r = 1; n 5 e conjecturaram alguns valores em dimensões maiores.Nosso resultado principal é a obtenção de uma fórmula para o grau da componente R(2; 2r + 1) para r 1 em dimensão arbitrária n 2, a saber,
Abstract
Two of the main discrete invariants of a projective variety are its dimension and degree. The spaces of holomorphic foliations of codimension one and degree d in CPn, n 3 are subschemes of the projective space CP (H0(Pn; 1(d + 1))) defined by the equations ofconditon of integrability, w ^ dw = 0. We determine in this thesis the degrees of certain components of the spaces of holomorphicfoliations of codimension one in CPn, n 3. For each integer r 1, letR(2; 2r +1) denote the set of foliations induced by 1-forms of type 2FdG(2r +1)GdF, where F;G denote homogeneous polinomials of degrees 2; 2r + 1. X. Gomez-Mont e A. Lins Neto proved in [2] that R(2; 2r + 1) is an irreducible component of the space of holomorphic foliations of degree 2r + 1. After, J. V. Pereira, F. Cukierman and I. Vainsencher proved in [5] that it is a rational and generically reduced component. They found the degree of that component for r = 1; n 5 and conjectured a few more in higherdimensions.Our main result gives a closed formula for the degree of the component R(2; 2r + 1) for r 1 in arbitrary dimension n 2, to wit
Assunto
Matemática, Folheações (Matematica), Aplicações holomorfas, Geometria algebrica
Palavras-chave
Matemática