Sobre o grau de componentes dos espaços das folheações holomorfas de codimensão um em CPn

dc.creatorDaniel Carlos Leite
dc.date.accessioned2019-08-09T12:53:25Z
dc.date.accessioned2025-09-08T23:40:13Z
dc.date.available2019-08-09T12:53:25Z
dc.date.issued2015-01-28
dc.description.abstractTwo of the main discrete invariants of a projective variety are its dimension and degree. The spaces of holomorphic foliations of codimension one and degree d in CPn, n 3 are subschemes of the projective space CP (H0(Pn; 1(d + 1))) defined by the equations ofconditon of integrability, w ^ dw = 0. We determine in this thesis the degrees of certain components of the spaces of holomorphicfoliations of codimension one in CPn, n 3. For each integer r 1, letR(2; 2r +1) denote the set of foliations induced by 1-forms of type 2FdG(2r +1)GdF, where F;G denote homogeneous polinomials of degrees 2; 2r + 1. X. Gomez-Mont e A. Lins Neto proved in [2] that R(2; 2r + 1) is an irreducible component of the space of holomorphic foliations of degree 2r + 1. After, J. V. Pereira, F. Cukierman and I. Vainsencher proved in [5] that it is a rational and generically reduced component. They found the degree of that component for r = 1; n 5 and conjectured a few more in higherdimensions.Our main result gives a closed formula for the degree of the component R(2; 2r + 1) for r 1 in arbitrary dimension n 2, to wit
dc.identifier.urihttps://hdl.handle.net/1843/EABA-9UJRHB
dc.languagePortuguês
dc.publisherUniversidade Federal de Minas Gerais
dc.rightsAcesso Aberto
dc.subjectMatemática
dc.subjectFolheações (Matematica)
dc.subjectAplicações holomorfas
dc.subjectGeometria algebrica
dc.subject.otherMatemática
dc.titleSobre o grau de componentes dos espaços das folheações holomorfas de codimensão um em CPn
dc.typeTese de doutorado
local.contributor.advisor1Israel Vainsencher
local.contributor.referee1Mauricio Barros Correa Junior
local.contributor.referee1André Luis Contiero
local.contributor.referee1Severino Collier Coutinho
local.contributor.referee1Hamid Hassanzadeh
local.description.resumoDois dos principais invariantes discretos de uma variedade projetiva são a dimensão e o grau. Os espaços de folheações holomorfas de codimensão um e grau d no espaço projetivo complexo CPn, n 3 são subesquemas do espação projetivo CP (H0(Pn;1(d + 1)))definidos pelas equações da condição de integrabilidade, w ^ dw = 0.Nesta tese determinamos os graus de certas componentes dos espaços de folheações holomorfas de codimensão um em CPn, n 3. Para cada inteiro r 1, seja R(2; 2r + 1) o conjunto das folheações induzidas por 1-formas do tipo 2FdG (2r + 1)GdF, onde F;G denotam polinômios homogêneos de graus 2; 2r + 1. X. Gomez-Mont e A. LinsNeto mostraram em [2] que R(2; 2r + 1) e uma componente irredutível do espaço das folheações holomorfas de grau 2r + 1. Mais tarde, J. V. Pereira, F. Cukierman e I. Vainsencher mostraram em [5] que essa componente é racional e genericamente reduzida.Estes calcularam o grau dessa componente para r = 1; n 5 e conjecturaram alguns valores em dimensões maiores.Nosso resultado principal é a obtenção de uma fórmula para o grau da componente R(2; 2r + 1) para r 1 em dimensão arbitrária n 2, a saber,
local.publisher.initialsUFMG

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
tese___daniel_carlos_leite.pdf
Tamanho:
497.81 KB
Formato:
Adobe Portable Document Format