A conjectura de Willmore: um caso particular

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Dissertação de mestrado

Título alternativo

Primeiro orientador

Membros da banca

Susana Candida Fornari
Heleno da Silva Cunha

Resumo

Neste trabalho, provamos um caso particular da conjectura de Willmore, para toros M E3 mergulhados no espaço Euclidiano E3 como tubos de seções circulares constantes. Para isso, estudamos algumas propriedades do funcional energia de Willmore, dado porW(M) = Z M H2dS. Provamos que ele é invariante sob transformações conformes do espaço Euclidiano E3, e provamos também que a condição para que a integral acima, dada para variações normaisde imersões da superfície orientável e compacta M E3 em E3, seja estacionária é a chamada equação de Euler: H + 2H(H2 K) 0.

Abstract

In this paper, we prove a particular case of Willmore conjecture, for torus M E3 embedded in Euclidean space E3 as tubes of constant circular sections. For this, we study some properties of the Willmore energy functional, given by W(M) = Z M H2dS. We prove that it is invariant under conformal transformations of Euclidean space E3, and we also prove that the condition for which the integral above, given to normal variationsof immersions of the compact orientable surface M E3 in E3, is stationary is called Euler equation: H + 2H(H2 K) 0.

Assunto

Matemática, Geometria diferencial

Palavras-chave

Matemática

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por