Strong delay-independent stability of linear delay systems
| dc.creator | Fúlvia de Oliveira | |
| dc.creator | Fernando de Oliveira Souza | |
| dc.date.accessioned | 2025-05-21T13:39:34Z | |
| dc.date.accessioned | 2025-09-08T23:17:25Z | |
| dc.date.available | 2025-05-21T13:39:34Z | |
| dc.date.issued | 2019 | |
| dc.identifier.doi | https://doi.org/10.1016/j.jfranklin.2019.05.011 | |
| dc.identifier.issn | 0016-0032 | |
| dc.identifier.uri | https://hdl.handle.net/1843/82407 | |
| dc.language | eng | |
| dc.publisher | Universidade Federal de Minas Gerais | |
| dc.relation.ispartof | Journal of the Franklin institute | |
| dc.rights | Acesso Restrito | |
| dc.subject | Modelos matemáticos | |
| dc.title | Strong delay-independent stability of linear delay systems | |
| dc.type | Artigo de periódico | |
| local.citation.epage | 5433 | |
| local.citation.spage | 5421 | |
| local.citation.volume | 356 | |
| local.description.resumo | This paper presents a new necessary and sufficient condition for testing the strong delay-independent stability of linear systems subject to a single delay. The proposed method follows from the use of matrix polynomials constraints and the Kalman–Yakubovich–Popov lemma. The resulting condition can be checked exactly by solving a feasibility problem in terms of a linear matrix inequality (LMI). Simple numerical examples are given to show the effectiveness of the proposed method. | |
| local.publisher.country | Brasil | |
| local.publisher.department | ENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA | |
| local.publisher.initials | UFMG | |
| local.url.externa | https://www.sciencedirect.com/science/article/pii/S0016003219303291 |
Arquivos
Licença do pacote
1 - 1 de 1