Kinetics of lumefantrine thermal decomposition employing isoconversional models and artificial neural network

Descrição

Tipo

Artigo de periódico

Título alternativo

Primeiro orientador

Membros da banca

Resumo

Thermal analysis can be used to determine shelf-life and kinetic parameters in pharmaceutical systems. This work investigates the kinetic of lumefantrine thermal decomposition, an antimalarial, using non-isothermal and isothermal experimental data. The non-isothermal conditions are analyzed applying Vyazovkin method, while isothermal conditions employ models fitting procedure and artificial neural network. Lumefantrine was characterized by powder X-ray diffraction and Fourier transform infrared spectroscopy. The initial stage of lumefantrine thermal decomposition, about 5% of conversion, corresponds to the loss of chlorine and hydroxyl, being correctly predicted by the neural network as a complex event. At room temperature, the D3 model is appropriate to describe the process, once the half-life time is 19 months, in agreement with manufacturer. Isoconversional model determined the activation energy along the whole process while isothermal methodology determined the global value considering the entire process. The results provide important information for the pharmaceutical industry to assay levels of acceptable lumefantrine contents.

Abstract

Assunto

Lumefantrina, Antimalárico, Cinética da decomposição térmica

Palavras-chave

Solid thermal stability, Antimalarial drug, Kinetic triplet, Thermogravimetry, Multilayer perceptron network

Citação

Curso

Endereço externo

https://www.scielo.br/j/jbchs/a/bBmxxMZzr8zNQyfLHbJVM5F/?lang=en

Avaliação

Revisão

Suplementado Por

Referenciado Por