Diagnóstico de influência em modelos de regressão para dados censurados utilizando distribuições de caudas pesadas

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal de Minas Gerais

Descrição

Tipo

Tese de doutorado

Título alternativo

Primeiro orientador

Membros da banca

Vinicius Diniz Mayrink

Resumo

A ampla utilização dos modelos de regressão para descrever fenômenos em diversas áreas do conhecimento motiva as pesquisas estatísticas a aperfeiçoar a formulação destas técnicas. Uma etapa importante da modelagem que tem recebido atenção especial na literatura estatística é a análise de influência, definida como o estudo da dependência dos resultados fornecidos pelo modelo a pequenas perturbações em sua elaboração. O objetivo deste trabalho é construir medidas de influência global e local, considerando variável resposta censurada, para os modelos regressão linear e não linear utilizando distribuições da família Normal/Independente, e para modelos de regressão linear para dados longitudinais utilizando distribuição t de Student multivariada e estrutura de correlação damped exponential. Especificamente o foco é comparar os resultados obtidos na análise de influência feita via modelo Normal com os obtidos utilizando-se as distribuições de caudas pesadas. Os resultados obtidos via estudos de simulação e aplicações mostraram que os modelos de caudas pesadas são menos influenciados por observações discrepantes que o modelo Normal. Os achados deste estudo comprovam que além de gerarem resultados mais robustos na estimação, os modelos de caudas pesadas fornecem resultados mais estáveis, na presença de observações atípicas, que o modelo Normal.

Abstract

Assunto

Análise de regressão, Estatística, Estatistica, Dados censurados, Distribuições de caudas pesadas

Palavras-chave

Diagnóstico de influência, Dados censurados, Distribuições Normais/Independentes, Modelos de regressão

Citação

Departamento

Curso

Endereço externo

Avaliação

Revisão

Suplementado Por

Referenciado Por