Please use this identifier to cite or link to this item: http://hdl.handle.net/1843/81196
Type: Artigo de Evento
Title: Uma abordagem evolutiva multiobjetivo baseada em ponto de atração para seleção de variáveis em problemas de classificação de falhas
Authors: Fernando Marcos Souza Silva
Jessica Flaviane Ferreira
Reinaldo Martinez Palhares
Marcos Flávio Silveira Vasconcelos D'angelo
Abstract: This paper presents a variable selection wrapper method called NSGA-II-GMM-AP that is based on the evolutionary algorithm NSGA-II and classifiers that uses Gaussian Mixture Models. This algorithm is a bi-objective approach that has as main characteristic the use of attraction point which is responsible for the complexity control of individuals in the NSGA-II population during the optimization process. Experiments carried out on Tennessee Eastman Petrochemical Process dataset for fault classification showed that NSGA-II-GMM-AP leads to solutions with lower classification error than the other methods applied, being a promising approach to the variable selection problem.
Subject: Engenharia de produção
Controle automático
Teoria do controle
Modelos matemáticos
language: por
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal de Minas Gerais
Publisher Initials: UFMG
metadata.dc.publisher.department: ENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
Rights: Acesso Aberto
URI: http://hdl.handle.net/1843/81196
Issue Date: 2017
metadata.dc.url.externa: http://ws2.din.uem.br/~ademir/sbpo/sbpo2017/pdf/168920.pdf
metadata.dc.relation.ispartof: XLIX Simpósio Brasileiro de Pesquisa Operacional
Appears in Collections:Artigo de Evento

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.